References
- A
-
Alspach, D.E. A fixed point free nonexpansive map. Proc. Amer.
Math. Soc. 82, (1981), 423-424.
1990.
- A-K
-
A.G. Aksoy and M.A. Khamsi.
Nonstandard Methods in Fixed Point Theory. Universitext,
Springer.
1990.
- Be-S
-
Bernal, J., Sullivan, F., Banach spaces that have
normal structure and are isomorphic to a Hilbert space,
Proc. Amer. Math. Soc. 90 (1984), 550-554.
- By
-
Bynum, W.L., Normal structure coefficients for Banach
spaces,
Pacific J. Math. 86 (1980), 427-436.
- D-J-S
-
Day, M.M., James, R.C. and Swaminathan, S., Normed linear
spaces which are uniformly convex in every direction. Canad.
J. Math. 23 (1971), 1051-1059.
- DB
-
Domínguez Benavides, T. Stability of the fixed poit property for nonexpansive mappings. To app.
- Ga
-
J. García Falset.
The fixed point property in spaces
with NUS
property. Preprint.
- G-K
-
K. Goebel and W.A. Kirk.
Topics in metric fixed point theory.
Cambridge Univ. Pres. 1990.
- G-S
-
Garcia-Falset, J. Sims, B.
Property (M) and the weak fixed point property
To app. in Proc.A.M.S.
- J-L
-
A. Jiménez-Melado and
E. Llorens-Fuster. Stability of the
fixed point property for nonexpansive mappings. Houston
J. of. Math.,
18, (2), 251-257, 1992.
- Kh
-
M.A. Khamsi, On the stability of the fixed point property
in , Revista Colombiana de Mat. 28, (1994), 1-6.
- K
-
Kirk, W.A.
A fixed point theorem for mappings which do not
increase distances,
Amer. Math. Monthly 72 (1965), 1004-1006.
- L-T-X
-
Lin, P.K., Tan K.K. ,and Xu, H.K.
Demiclosedness principle and asymptotic behavior for
asymptotically nonexpansive mappings.
Nonlinear Analysis TMA 24, 1995, 929-946.
- Ma
-
Maurey, B.: Points fixes des contractions sur un convexe
fermé de ,
Semin Anal. Fonct. Exposé VIII (1980), 18.
- Pr 1
-
Prus, S.,
Nearly uniformly smooth Banach spaces Boll. U.M.I. 3-B 7
(1989), 507-521.
- Pr 2
-
Prus, S.,
On Bynum's fixed point theorem,
Atti Sem. Mat. Fis. Univ. di Modena, 38 (1990) 535-545.
- Pr 3
-
Prus, S.,
Banach spaces with the uniform Opial property,
Nonlinear Analysis TMA, 18 (1992) 697-704.
- X
-
Xu, H.K. Geometrical
cofficients of Banach spaces and nonlinear mappings, Preprint.
Fixed Point Theory on the Web
Fri Oct 25 17:49:18 MDT 1996