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1. Given that the QR decomposition of A is
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use this to find z which minimizes ||Az — bl|s, where b = (2, —3,4).
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2. Find the straight line f = mx + b which most nearly 1ﬁﬁérpol ates

the points (0, —1), (2, 2), ,3 , (5,4) in the least squares sense.
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3. Prove the following:

a. If ATAz = ATb, then z minimizes ||Az — bl|;.

I Alcse)=8)(%= 11 A—8)] + JAc "+ 2(4e) (Ax-8)

= A be N LT WA ~AR )
€ 0

= [1Ax—8+ A" = [1Ax-4)*



(

[

b. I — 21})“7‘1”1: is orthogonal, for any vector w # 0.
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4. Find all eigenvalues of the pseudo-triangular matrix
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5. If the Jacobi iteration A,,; = QT A,Q,, where A; = A converges to
diagonal form in, say, 10 iterations, so that A;; =~ D, what are the

eigenvalues of A, and what are the eigenvectors? / /
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6. a. Find an orthogonal matrix @ such that QAQ™! is upper Hessen-
berg, if



b. Is QAQ ™! symmetric (note: you need not actually find A)?
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7. a. Do one complete iteration of the LR method, starting with
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b. Is the new matrix still tridiagonal?
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c. If you had done a QR iteration instead of LR, would the new
matrix still be tridiagonal?
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1. a. Find a QR decomposition of

O&GC, L,L;
> A M E

b. Do onc complete iteration of the QR method to the matrix A. Is
the new matrix more nearly diagonal, in the sense that the sum
of squarcs of the off-diagonal clements iq smaller (note: sum of
squarcs of cntire matrix will be the same)? == ™,
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c. Use the Jacobi method to find all cigenvalue and eigenvectors of
A. (Note: only one iteration is necessary!)
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2. Prove that if z is a solution to AATz = b, then 2 = ATz is a solution
of Az = b of minimum norm.
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3. Under certain conditions, the @R iteration produces a quasitriangular
matrix in the limit.

E

a. Define a quasitriangular matrix. W(f A[mn Gz)) M% N0
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b. In genceral terms, how do you find the cigenvalues of a quasitrian-
gular matrix?
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c. Is it necessary for convergence, to start the QR iteration from Hes-
senberg form? What is the advantage of starting from Hessenberg
form?
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d. If A is symmetric, show that B = QT AQ is still symmetric, if @
is an orthogonal matrix. This means that if the original matrix
is symmetric, and orthogonal transformations are used to reduce
it to upper Hessenberg form, the resulting matrix has what (non-
zero) structure? Is B = M™'AM still symmetric, if M is not
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c. If A is upper Hessenberg, the work to do onc QR itcration is
proportional to what power of N (sizc of matrix)? What if A is
tridiagonal and symmectric? What will happen if the QR iteration
is applied to a matrix that is tridiagonal and not symmectric?
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3. Consider the iteration A,p1 = AA,, where A, = A, and assumc A is
diagonalizable (A = P~'DP).

a." Show that in the limit as n — 0o, A,p1 = M Ay, where Ap is the
largest eigenvalue of A in absolute value (assume there is a largest
eigenvalue).

A=p"=Def= PO
- ¢ (Q*“ p s (TEC-F (F)
?\l

o oo AT A2 NA
NN

b. The normal power iteration is v,.; = Av,, that is, we normally
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start with a random vector vg and multiply it repeatedly by A,
rather than start with the matrix A and multiply it repeatedly by
A. What is the advantage of the normal power iteration compared
to the alternative approach defined above? Is there any potential
disadvantage?
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¢. Can you think of a way in which the iteration A, = AA, could

be made more cfficient then—the—nermeatpower—method? (Hint:

supposc n is a power of 2)
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a. Find a QR decomposition of
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b. Use this QR decomposition to find min||Az — b||z, where b =
(1,2, —1).
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c¢. Find min||Az — b||; using the normal equations method.
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2. (Answer either (a) OR (b), and (c) and (d)). If
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a. Do one QR iteration on A.
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b. Do one LR iteration on A. L “‘\‘
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c. Use the power method to find the largest eigenvalue (in absolute
value) of A, starting with zo = (2,1). (Hint: the eigenvalues are
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Repeat (c) but start with g = (1, —1). Explain why the answer
is not the same as in (c). What would you expect to happen if
you started with zo = (1, —1.001)?
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3. (Answer either (a) or (b)). If

1 —-12 5
A= -12 2 3
5 3 4
a. Find an orthogonal matrix @ such that QAQ™! is upper Hessen-
berg.
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b. Find an elementry matrix M such that MAM ™! is upper Hessen-
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4, Find the eigenvalues of the quasitriangular matrix:
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1. a. Find min| Az—b||2, using orthogonal reduction, where b = (1,1, —1)
and:
3 4
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b. Find min||Az —b||2 using the normal equations _rﬁéﬂl_o_cl.'_/
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2. Find the straight line f(z) = mx 4 b which most nearly interpolates
the points (0, —2), (2, 1), (3,2),(5,7) in the least squares sense.
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a. Do one QR iteration on A.
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b. Use the Jacobi method to find all eigenvalues and eigenvectors of
A. (Note: only one iteration is necessary!)
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c. Use the power method to find the largest eigenvalue (in absolute
value) of A, starting with zo = (2, 1).
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4. a. Show that if A is symmetric, and @ is orthogonal, QAQ ™" is still
symmetric.

B-gpaal=dra”
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b. Find an orthogonal matrix @ such that QAQ~! is upper Hessen-
berg (and therefore tridiagonal, since A is symmetric).
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Given that the QR decomposition of A is
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use this to find  which minimizes ||Az — b||s, where b = (2,3, 1).
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a. Prove that if z is a solution to AATz = b, then z = ATz is a
solution of Az = b of minimum norm.
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b. Use (a) to find the quadratic polynomial a + bz + cz?, with min-

imum value of a? + b% + ¢, which passes through the two points
(0,1),(1,3).
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b. Do one LR iteration on A.
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c. Use the Jacobi method to find all elgenvalues and eigenvectors of
A. (Note: only one iteration is necessary!)
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d. Use the power method to find the largest eigenvalue (in absolute
value) of A, starting with zo = (1, 2)

4. Find an orthogonal matrix @ such that QAQ™ is tridiagonal, if
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Name ___ /(QLL_ _— —
1. Given that the QR decomposition of A is 0
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use this to find z which minimizes || Az —bl|z, where b = (v/3, —v/3,v/3).
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9. Prove that if z is a solution to AATz = b, then z = ATz is a solution
of Ax = b of minimum norm.
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3. Find all eigenvalues of the pseudo-triangular matrix = / ()C/ / T / / ('/ /
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4. If the Jacobi iteration Apy1 = QT A,Q,, where A; = A converges
to diagonal form in, say, 5 iterations, so that Ag ~ D, what are the
eigenvalues of A, and what are the eigenvectors?
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a. Find an orthogonal matrix ) such that QAQ™! is upper Hessen-
berg.
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b. Find an elementary matrix M such that MAM™" is upper Hes-

senberg.
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6. Do one complete iteration of the LR method, starting with

7. Use the power method to find the largest (in absolute value) eigenvalue

of
1 1 0
1 10 1
0 1 1

Start with (1,5,1) and do 3 iterations. What is the corresponding
eigenvector? ,
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Math 5330, Test I (g)

1. a. In problem 2.9, you proved that if z is a solution to AATz = b,
then £ = ATz is a solution of Az = b of minimum norm. Use
this to find the quadratic polynomial a + bz + cz*, with minimum
a2 + b? + ¢2, which passes through the two points (0,2), (1, 3).
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b. Find the least squares quadratic polynomial fit, a + bx + cz?, to
the points (0, 2), (1, 3), (2,2), (3,2). Use the normal equations, but
you do not need to solve the final linear system.
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9. What is the order of work (power of N) for each of the following?
Assume all matrices are N by N and full unless otherwise stated, and

L(' assume advantage is taken of any special structure mentioned.

a. The Jacobi method to find the eigenvalues of a symmetric matrix

A. oL 3)



One LR iteration, if A is upper Hessenberg (assume no pivoting). O ﬂ/ Z)
One QR iteration, if A is symmetric and tridiagonal. O (/«/)

One power method iteration. ) ( /\/'L)

The first inverse power method iteration. O (/J 3]

The second inverse power method iteration, assuming the LU de-
composition from the first iteration is saved. O(/‘/ 7’]

g. The orthogonal transformation of a full matrix to a similar upper

Hessenberg matrix. O( //3)

3. Explain how you would find the vector = which minimizes || Az — b2,
if you already have the QR decomposition of the M by N matrix A.
The operation count would be O(N®) for what , if we assume M =
9N? What would the operation count be if you don’t have a QR

decomposition? & K;(’R ’& S KK ,A\ @T/@
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a. Use the Jacobi method to find all eigenvalues of the matrix. Only
one iteration is necessary!
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b. Find an orthogonal matrix @ such that QAQT is upper Hessenberg

(and quasi-triangular).
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c. Now find the eigenvalues of the quasi-triangular matrix resulting

from part (b)
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d. Do 2 or 3 iterations of the power method to find the largest eigen
value (in absolute value) of A, starting with xo = (2,0,3).
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