Math 5329, Test 11 (k\

1. a. Find the LU decomposition (no pivoting necessary) for
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b. Solve Az = b, where b = (7,1,3) by first solving Ly = 6, theh
Uz =y. —
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2. If A= L+ D+ U (L = strictly lower triangular, U is strictly upper
triangular and D is diagonal), what is the matrix whose cigenvalue
must be less than one in absolute value for convergence, for the

a. Jacobi Iterative Method =
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eigenvalue (in absolute value) of A, and the corresponding eigenvector,
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3. Do several iterations of the inverse power method to find the smallest K 1 \
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4. If py(z) is the polynomial of degree N which interpolates f(z) =
cos(3z) at N + 1 uniformly spaced points between 0 and 7, find a
bound, involving only N, on ma’nﬁ% z < m)|pn(z) — f(z)| Will your
bound go to zero as N — ocoX_ "¢
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5. Determine Lh(. atpuati nq Whlch must be satisfied for

s(z) = a(zx—2)2+b(z—-1)2 z<1
c(z — 2)? 1<z<3
diz—2) +e(r—3)® 3<=z

to be a cubic spline.
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Math 5329, Test 11 (}, )

Name ____/\"- ’E % _________________

1. If
1 a
a=a 3

Find the range of values of a for which the Gauss-Seidel method will
converge, when applied to a system with matrix A.
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2. & Find the LU decomposition (without pivoting) of
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b. Now find the Choleski decomposition LLT of A (not necessarily
the same L as part (a)).

S 9V [ £

}/72/0 Q 7 3¢
z 2530 o5

c. Prove that A is positive definite. (Hint: Use part (b))
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3. Do several iterations of the inverse power method to find the smallest
cigenvalue (in absolute value) of A, and the corresponding eigenvector,
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4. If ps(x) is the polynomial of degree 3 which interpolates f(z) = In(z) at
z=1.0,1.1,1.2, 1.3, find as small a bound as possible on maz1.1<z<1.2|p3(z)—

f(z)|]. (Note: the range is only (1.1,1.2)). _ €= x= (S
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(don’t try to solve) the equations {o determine the cubic spline

s(z) = a+bz+ex?+dz® -1<z<0
e+ fr4+gr2+hz® 0<z<1

5. Set up

LF which interpolates to f(z) = sin(§z) at z = —1,0, 1 and which matches

f"(z) at the endpoints z = —1 and B = d=

P = f"(«')-fﬂ‘m(%\r,, —

///O o 5 T
-ﬁ[‘,’) - fi-r % o b tcd =
i f -—;7]7'/"‘ a =0




Math 5329, Test II (C\

1. a. Find the LU decomposition (without pivoting) for

b. Now find the Cholesky decomposition LLT of the positive definite
matrix A. (Hint: First, write LU in the form LDU,), where D is
the diagonal of U, and U; = DU and note that Us = LT. )
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2. Find the condition number (using the Ly, norm) of the matrix

1 2
A=
2 4410710

If machine precision is about 10716 about how many significant digits
should we expect when Az = b is solved, using Gaussian elimination

with partial pivoting?
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3. Do several iterations of the inverse power method to find the smallest
eigenvalue (in absolute value) of A, and the corresponding eigenvector,
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4. If py(z) is the polynomial of degree 2 which interpolates f(z) = in(z)
at z = 0.5,1.0, 1.5, find reasonable upper and lower bounds on [py(2) —

in(2)].
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5. Determine a,b,c,d,e so that

s(z) = alz—22+bz—-1)% z<1
c(z — 2)2 1<zx<3
dlz—2)+e(z—3)® 3<z

(4,2). (There is a unique solution, even though no end conditions are
specified.)

@ Lf is the cubic spline interpolant through the points (0,2),(1,4),(3,4) and
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Math 5329, Test 11 (&)

- [(37 _________________

1. a. Find the LU decomposition (no pivoting necessary) for

1 2
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b. What is an LU decomposition good for?
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c. Find the Cholesky decomposition LLT of A.
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d. Show that a matri t has a Chole§ky decomposition A = LL7,
where L nonsingular, is positive deﬁmte
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2. It A= L+ D+ U (L = strictly lower triangular, U is strictly upper
triangular and D is diagonal), what is the matrix whose eigenvalue&
must be less than one in absolute value for convergence, for the

a. Jacobi Iterative Method
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b. Gauss-Seidel Iterative Method ——_
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3. To find the eigenvalue of A closest to a number p, the power method

can be applied to what matrix? Explain how an LU decomposition
could be used to make thi/s‘itﬁation more efficient.
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4. If py(z) is the polynomial of degree N which interpolates f(z) = €**
at N + 1 uniformly spaced points between 0 and 10, find a bound,
involving only N, on maz(0 < z < 10)|pn(z) — f(z)| Will your bound

5 go to zero as N — 0o?
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5. What is the condition number (using the Ly, norm) of

1 1
= [ 1 1+107° J
If our computer has about 20 decimal digits precision, about how many
?/ significant decimal digits would we expect in the solution of Az = b7
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6. A quintic spline interpolant is a function which is a polynomial of degree

five or less in each interval (z;_1,%;),7 = 1,..., N and passes through

the points (z;,%),7 = 0,..., N and is continuous and has continuous
first, second, third and fourth derivatives.
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a. How many unknown coefficients need to be determined? (Hint:
There are N intervals_and the quintic has how many coefficients
in each?)

b. How many interpolation conditions are there? (Hint: There are
two interpolation conditions for each interval.)

c. How many continuity conditions are there? (Hint: s(x) is auto-
matically continuous because of the interpolation conditions, so
we only need to require that s',s”,s",s® be continuous at each
interior point—how many interior points are there?)
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d. If you add the number of interpolation conditions (part b) and
continuity conditions (part ¢), does this equal the number of un-
knowns (part a)? If not, what needs to be done to make the
quintic spline interpolation problem have a unique solution?
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