Math 3323, Final

Name

1. If A =

$$\left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array}\right]$$

a. Find all eigenvalues of A.

answer:
$$\lambda = 0, 2$$

b. For each eigenvalue, find a basis for the subspace of eigenvectors (the eigenspace).

answer: for
$$\lambda=0,$$
 basis is $[(0,1,-1)],$ for $\lambda=2,$ basis is $[(1,0,0),(0,1,1)].$

c. Is A defective (explain answer)?

answer: no, there are 3 independent eigenvectors.

2. Find the eigenvalues and corresponding eigenvectors for A =

$$\left[\begin{array}{cc} 2 & 2 \\ -4 & 6 \end{array}\right]$$

answer:
$$\lambda_1 = 4 + 2i$$
, $x_1 = (1, 1 + i)$; $\lambda_2 = 4 - 2i$, $x_2 = (1, 1 - i)$.

- 3. a. If det(A) = 10, $det(B^{-1}) = 2$, what is $det(B^2AB^{-1})$? answer: 5.
 - b. Show that if A and B are orthogonal, AB is orthogonal. answer: $(AB)^T(AB) = B^TA^TAB = B^TB = I$
 - c. What can you say about the eigenvalues of a symmetric matrix? answer: they are real.
 - d. What can you say about the eigenvalues of a positive definite matrix? answer: they are real and positive.
 - e. What can you say about the eigenvalues of an orthogonal matrix? answer: they have absolute value 1.
 - f. What can you say about the eigenvalues of A and $SAS^{-1}?\,$ answer: they are the same

4. Find the determinant of A =

$$\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
4 & 0 & 0 & 0 \\
0 & 0 & 0 & 10
\end{array}\right]$$

answer: 80

5. Find the general solution of (hint: see problem 1):

$$\frac{dx}{dt} = 2x$$

$$\frac{dy}{dt} = y + z$$

$$\frac{dz}{dt} = y + z$$

answer:
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = C_1 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + C_2 e^{2t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + C_3 e^{2t} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

6. Find the inverse of the matrix of problem 4.

answer:

$$\left[\begin{array}{cccc}
0 & 0 & 0.25 & 0 \\
1 & 0 & -0.25 & 0 \\
0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0.1
\end{array}\right]$$

7. If A =

$$\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
2 & 5 & 7 & 1 \\
1 & 0 & 1 & 3
\end{array}\right]$$

a. Find a basis for the subspace spanned by the rows of A.

answer: [(1,2,3,1),(0,1,1,-1)] (other answers possible)

b. Find a basis for the subspace spanned by the columns of A.

answer: [(1,2,1),(0,1,-2)] (other answers possible)

c. What is the rank of A? answer: 2

8. Write the equations for:

a. The plane through the points (0,0,0),(1,-1,2), and (3,3,3).

answer:
$$-9x + 3y + 6z = 0$$
 or $-3x + y + 2z = 0$.

b. The line through (1,-1,2) perpendicular to this plane.

answer:
$$x = 1 - 9t, y = -1 + 3t, z = 2 + 6t$$