Math 3323, Test II

Name _____

1. What is the volume of a parallelopiped with edges

$$u = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix}, w = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$

answer: 24

2. If

$$A = \left[\begin{array}{cccc} 1 & 1 & 3 & 1 \\ 2 & 1 & 5 & 4 \\ 1 & 2 & 4 & -1 \end{array} \right],$$

a. Find a basis for the subspace spanned by the rows of A.

answer: < 1, 0, 2, 3 >and < 0, 1, 1, -2 >is one basis.

b. Find a basis for the null space of A.

answer: < -2, -1, 1, 0 >and < -3, 2, 0, 1 >is one basis.

- 3. If $[u_1,...,u_p]$ is an orthogonal set of nonzero vectors,
 - a. Prove that this set is linearly independent.

b. If
$$w = c_1 u_1 + ... + c_p u_p$$
, find c_i .

answer:
$$c_i = w^T u_i / u_i^T u_i$$

4. Find the least-squares linear fit to the points (-1,-1), (0,1), (1,2), (2,4).

answer: y = 1.6t + 0.7

- 5. True or False (remember that a statement is false unless it is *always* true):
 - a. The cross product is only defined for vectors in \mathbb{R}^3 . (true)
 - b. The line x=4+2t, y=7+2t, z=5+4t and the plane x+y-z=2 do not intersect. (true)
 - c. x = 4 + 2t, y = 7 + 2t, z = 5 + 4t and x = 2 + t, y = 5 + t, z = 1 + 2t are the same line. (true)
 - d. A set of 3 vectors in a 5-dimensional subspace may be a spanning set for the subspace. (false)
 - e. A set of 3 vectors in a 5-dimensional subspace may be linearly dependent. (true)
 - f. A set of 7 vectors in a 5-dimensional subspace may be linearly independent. (false)
 - g. The dimensions of the subspaces spanned by the rows and columns of an $m \times n$ matrix are the same. (true)
 - h. The range of AB is a subset of the range of A. (true)
 - i. The intersection of two subspaces is a subspace. (true)
 - j. The null space of the n x n zero matrix is \mathbb{R}^n . (true)
 - k. The set of solutions to Ax = b is a subspace. (false)
 - l. $u \times v = ||u|| \ ||v|| \ sin(\theta)$, where θ is the angle between u and v. (false)