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ABSTRACT

We classify knots abtained from twisting prime reduced links, and give a new condition
for recognition of hyperbolic knots. We also give a combinatorial condition to exclude
torus knots.

1. Introduction
Let L = K ∪ C1 ∪ C2... ∪ Ct be a prime augmented link (see [8] for definition) where K is the

unknot and {C1, C2, ..., Ct} is a disjoint union of trivial circles such the family {Ci}i=t
i=1 bounds non-

parallel disjonts disks {Di}i=t
i=1, each of which is perpendicular to the projection plane and intersects

the knots at exactly m points i.e.| Di ∩ K |= m ≥ 2 for any i = 1, 2, ...t. For convenience, we de-
note by n = (n1, n2, ..., nt) and D = (D1, ...,Dt). We successively perform a series of full ni-twisting
(i ∈ {1, 2, .., t})along Dehn disks D1,D2, ...,Dt:

K
n1−twist−→ K(n1)...

nk−twist−→ K(n1, ..., nk) = KD,n.

By Thurston geometrization theorem M3 = S3 − intN(K ∪ C1 ∪ C2... ∪ Ct) is either Seifert fibred,
or toroidal, or hyperbolic. In case t = 1 and | n |> 1, we proved in [2] that the resulting knot KD,n is
of the same type as the pair (K,D). If (K,D) is hyperbolic and KD,n is toroidal, then | n |= 1 (Ait
Nouh-Matignon-Motegi [2] and Gordon-Luecke [7]). In this paper, we show a similar result provided
that | Di ∩ K |= m ≥ 2 for all i = 1, 2, ...t.

Theorem 1.1. Assume that | ni |> 1 for any i = 1, 2, ...t, and L is prime and augmented. If
| Di ∩ K |= m ≥ 2 for any i = 1, 2, ...t, then KD,n is of the same type as (L,D). More precisely,

(1) If M3 is Seifert fibred, then t = 1, and KD,n is an (m,n1m ± 1)-torus knot.

(2) If M3 is toroidal, then KD,n is satellite.

(3) If M3 is hyperbolic, then KD,n is hyperbolic.
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Corralary 1.1. If (i) m ≥ 3 is odd, and (ii) t ≥ 2, (iii) | ni |> 1 for any i = 1, 2, ...t,and (iv)
any incoming arc of K to Di forms a clasp with Ci = ∂Di (see Figure 2.(i)) then both L and KD,n

are hyperbolic.

In the following Corollary, we assume that | Di ∩ K |= 2 for i ∈ {1, 2, ..., k}.
Corralary 1.2. Let k be a knot with a prime, twist-reduced diagram D(k). Assume that D(k)

has tw(D) ≥ 2 twist regions, and that each region contains at least 4 crossings. Then k is not a torus
knot.
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2. Preliminaries

To prove Theorem 1.1., we need the following theorems:

Theorem 2.1. (D. Gabai [6] ) Let M3 be a Haken 3-manifold such that ∂M3 contains a torus
component denoted T . Denote by Mφ = M

⋃

φ

S1 × D2 where φ ∈ Q, the manifold obtained by φ-Dehn

filling along T . Let S be a minimizing surface for the Thurston norm in H2(M3, ∂M3, Z). Then
x(φ(S)) is decreasing for at most one slope.
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Theorem 2.1. (D. Gabai [5], J. Berge [4]) Let V = S1 × D2 and k a knot in V such that k is not
contained in a 3-ball of V , and α =

p

q
∈ Q ∪ {±∞}. Then V (α) ∼= V if and only if k is a 0-bridge or

a 1-bridge relative to V .

3. Proof of results

Proof of Theorem 1.1.
If M3 is not hyperbolic, then M3 is either Seifert fibred or toroidal.

(1) If M3 is Seifert fibred, then S3 − intN(K ∪ C1 ∪ C2... ∪ Ct) is a (1, p)-fibred solid torus in which

K is a regular fiber. Hence KD,n is a (p, (
i=t∑

i=1

ni)p ± 1)-torus knot in S3. Since the wrapping

number | Di ∩ K = m | for any i = 1, 2, ..., t, and L is reduced, then t = 1 and p = m.

(2) If the twisting is toroidal, then M3 contains an essential torus T 2.

By the solid torus theorem (J.W. Alexander [3]), T 2 bounds a solid torus V in S3. From now
on, we denote C = C1 ∪ C2... ∪ Ck, There are five cases (see Figure 2):

Case 1: K ∪ C ⊂ S3 − V

This case is excluded since T 2 would be compressible (the meridian disk of V would be a
compressing disk of T 2).

Case 2. K ∪ C ⊂ V (Local twisting (see Figure 2(i))

Since T 2 is incompressible, then V is knotted. C1 is trivial in V , then C1 is equivalent to a merid-

ian of V . Therefore, C1 is a 0-bridge knot. By Berge-Gabai’s theorem V (C1,− 1
n1

) = V . Let

N3
1 = V − int(K ∪ C1). Since K is a trivial knot in V , then the winding number windV (K) = 0.

Therefore, there exist a surface (S1, ∂S1) ⊂ (N3
1 , ∂V ) such that ∂S1 = mV where mV is a merid-

ian of ∂V . Let [(S1, ∂S1)] = z ∈ H2(N3
1 , ∂N3

1 , Z). Since N3
1 is ∂-irreducible, then z is not a disk

and therefore its Thurston norm x(z) 
= 0. If we denote by N3
1 (α) = N3

1

⋃

φα

N(C1), then the

trivial surgery along C1 gives x(φ 1
0
(z)) = 0, and by Gabai’s theorem: x(φ− 1

n1

(z)) = x(z). This

implies that x(φ− 1
n1

(z)) 
= 0, and then wrapV (Kn1) ≥ 2. Therefore, Kn1 is a satellite knot, for

any n1 
= 0.This proves that ∂V (C1,− 1
n1

) = ∂V is essential in M(− 1
n1

) ∼= E(Kn1).

Now let N3
2 = N3

1 − intN(C2) (= V − intN(K ∪ C1 ∪ C2)), which is Haken. windV (K) = 0,
then windV (KD1,n1) = 0. Therefore, there exist a surface (S2, ∂S2) ⊂ (N3

2 , ∂V ) such that ∂S2 = mV

where mV is a meridian of ∂V . By a similar argument as above, we can re-apply Gabai’s theorem

to show that K(n1, n2) is a satellite knot, and M(− 1
n1

)(− 1
n2

) ∼= E(K(n1, n2)). By induction,

we can show that KD,n is satellite.
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Case 3: K ⊂ V and C ⊂ S3 − V ( T 2 is separating) (plain pattern twisting (see Figure 2(i))

C

K K

C

n = −1 n = +1

n = −1

n = +1

Figure 3:

K is trivial, then V is an unknotted torus, and then its core � is a trivial knot. Since | n1 |> 1,
then the pair (C, �) is not Mathieu-Domergue exception (see Figure 3), then �n1 is knotted. Prov-

ing that V (C1,− 1
n1

) = N(�n1) is equivalent to S3 − V (C1,− 1
n1

) = E(�n1). Let W = S3 − intV

which is an unknotted torus containing C1. Since K ⊂ V , then K ⊂ S3 − intW .

E(�n1) = (W − intN(� ∪ C1))
⋃

φ− 1
n1

N(C1)

= (S3 − intN(�)) − intN(C1)
⋃

φ− 1
n1

N(C1)

= (W − intN(C))
⋃

φ− 1
n1

N(C1)

= W (C1,− 1
n1

)

“In other words, the surgery is made outside V”

S3 = V ∪ W is a genus two Heegard splitting of S3.Therefore, we have S3 = V ∪ W which im-

plies that S3(C1,− 1
n1

) = V (C1,− 1
n1

) ∪ W (C1,− 1
n1

). Then S3 = V (C1,− 1
n1

) ∪ E(�n1), which

implies thatV (C1,− 1
n1

) = N(�n1). To prove that Kn1 ⊂ N(�n1), let V1 = V − intN(K), then
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we have:

S3 = V ∪ W =⇒ S3 − intN(K) = (V − intN(K)) ∪ W

=⇒ S3 − intN(K) = V1 ∪ W

=⇒ M(− 1
n1

) = V1(C1,− 1
n1

) ∪ W (C1,− 1
n1

)

=⇒ E(Kn1) = V1(C1,− 1
n1

) ∪ E(�n1)

=⇒ E(�n1) ⊂ E(Kn1)
=⇒ Kn1 ⊂ N(�n1)

Let’s prove now that wrN(�n1 )(Kn1) ≥ 2, we note that Kn1 is obtained by n1-twisting from K
along C1, then K is obtained by (−n1)-twisting from Kn1 . Therefore, Kn1 is not contained in

a 3-ball of V1(C1,− 1
n1

) and therefore wrapN(�n1 )(Kn1) ≥ 2.

Case 4: C ⊂ V and K ⊂ S3 − V .

V is standarly embeddded. Note that K ⊂ W and C ⊂ S3 − W . V and W plays similar roles,

then we apply the argument of Case 1. Therefore, ∂Wn1 is essential in M(− 1
n1

) = E(Kn1), or

equivalentely ∂Vn1 is essential in M(− 1
n1

) = E(Kn1). Consequentely, Kn1 is a satellite knot

with companion �n1.

C

K

Figure 4: Case 4

The argument can be repeated recursively for i ∈ {1, 2, ..., k}. Therefore, Theorem 1.1 holds.

Case 5: The case where some Ci ⊂ V and some Ci ⊂ S3 − V , yield always a satellite knot (Ci

does not intersect ∂V ). The argument is similar to the above cases.
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Proof of Corrolary 1.1:

Since t ≥ 2, then case (1) of Theorem 1.1 is excluded. Since m ≥ 3 is odd and K and Ci form a
clasp then case (2) of Theorem 1.1 is excluded. Therefore, L and KD,n are both hyperbolic.

Proof of Corrolary 1.2:

Since each twist region has at least 4 crossing, then let ci ≥ 4 be the number of crossing in the i-th
region Ri, with crossing circle Ci. The augmented link L is obtained by performing 1

ni
-Dehn surgery

on each Ci as follows: If ci is even (resp. odd), then ni = −εici (resp. ni = −εi
ci − 1

2
), where εi is the

sign of the twisting. Then L = C ∪ K, where K is the image of k after performing Dehn surgeries
along the crossing circles. Note that K is a knot in S3.

Case 1. If K is the unknot, then k = KD,n. Since ci ≥ 4 then | ni |≥ 2. Therefore, Theorem
1.1 implies that k is either a (2, 2n1 ± 1)-torus knot, or a satellite knot, or a hyperbolic knot. Since
tw(k) ≥ 2, then k is not a (2, 2n1 ± 1)-torus knot, and therefore k is not a torus knot.

Case 2. If K is knotted, then by construction, the unknotting number of K is less or equal to the

number of twist regions with odd number of crossings. Provided that we interchange ni = −εi
ci − 1

2
and ni = −εi

ci + 1
2

, the knot K can be transformed to the unknot K0, and then apply Theorem 1.1.

Remark. Note that the link L0 = C ∪K0 obtained in Case 2 is not the augmented link, and that
S3 − L ∼= S3 − L0. In particular, since S3 − L is hyperbolic (Adams, Agol,Thurston), then S3 − L0 is
hyperbolic.
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