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Abstract

We introduce the notion of characteristic twisting of knots in S3, motivated by
characteristic classes. We also define a new invariant of knots corresponding to the
minimal number of characteristic twisting disks of a knot k in S3. The proofs are
inspired from Kirby Calculus [14] and some old 4-dimensional techniques.

1. Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds
will be assumed to be oriented unless otherwise stated. In particular, all knots are
oriented. Let M4 be a closed 4-manifold and K a knot in ∂(M4 − intB4) ∼= S3,
where B4 is an embedded 4-ball in M4. If K bounds a properly embedded 2-disk
in M4 − intB4, then K is a slice knot in M4.

K

ω = 

n−full  twists 

−1/n − Dehn surgery along  C

C

(n, ω )−twisting

lk (K,C)        ( ω = 0)

Kn

Figure 1:

Let K be a knot in the 3-sphere S3, and D2 a disk intersecting K in its interior.
Let n be an integer. A − 1

n
-Dehn surgery along ∂D2 changes K into a new knot K ′

in S3. Let ω = lk(∂D2, L). We say that K ′ is obtained from K by (n, ω)-twisting

(or simply twisting). Then we write K
(n,ω)
→ Kn, or K

(n,ω)
→ K(n, ω). We say that

Kn is n-twisted provided that K is the unknot (see Figure 1).
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Y. Mathieu asked the following questions in [16]:

Is every knot in S3 twisted ? If yes what is the minimal number of twisting disks ?

Y. Ohyama [23] showed that any knot k in S3 can be untied by at most two single
twistings. Using 4-dimensional techniques, K. Miyazaki and A. Yasuhara [17] gave
an infinite family of prime knots which are non-twisted. We proved that T (5, 8) is
the smallest non-twistedtorus knot (see the author’s Ph. D. thesis [3]), and in a
joint work with A. Yasuhara [4], we proved that T (p, p + 4) is non-twisted for any
p ≥ 7.

Recall that a homology class ξ ∈ H2(M
4, Z) is said to be characteristic provided

that ξ.x ≡ x.x for any x ∈ H2(M
4, Z) (see [19]).From now on, {γ̄1, ..., γ̄m} (resp.

{γ1, ..., γm}; resp. {α, β}) denote the standard generators of H2(mCP 2−intN(B4), S3, Z)
(resp. H2(mCP 2 − intN(B4), S3, Z); resp. H2(S

2 × S2 − intN(B4), S3, Z)) with
α2 = β2 = 0, α.β = 1, γ2 = 1, γ̄2 = −1.

Example 1.1. It is easy to check that the homology class ωγ ∈ H2(CP 2, Z) is charac-
teristic if and only if ω is odd. Note also that aα + bβ ∈ H2(S

2×, Z) is characteristic
if and only if a and b are both even. Using Kirby calculus [14], K. Miyazaki and A.
Yasuhara [17] showed that if a knot k in S3 is obtained by (n, ω)-twisting from the
unknot, then k bounds a disk ∆, called the twisting disk of k such that:

[∆] =







ω(γ̄1 + .... + γ̄n) ∈ H2(nCP 2 − intB4, S3, Z) if n > 0

ω(γ1 + .... + γn) ∈ H2(| n | CP 2 − intB4, S3, Z) if n < 0

Note that [∆] is a characteristic class in either cases if and only if ω is odd. Note
that the homology class of this disk is given by the number of twisting and the
linking number of the twisting disk. However, it is not always characteristic. In the
following examples, U denotes the unknot.

Example 1.2. We can check that U
(−1,2)
−→ 41. Therefore, there exist a smooth disk

(∆, ∂∆) ⊂ (CP 2 − intB4, S3) such that:

∂∆ = 41 and [∆] = 2γ ∈ H2(CP 2 − intB4, S3, Z).

Note that [∆] = 2γ ∈ H2(CP 2 − intB4, S3, Z) is not characteristic (see [17]).

Example 1.3. Note that U
(2,2)
−→ 31. Then,there exists (∆, ∂∆) ⊂ (S2 × S2 − intB4, S3)

such that ∂∆ = 31 and [∆] = −2α + 2β ∈ H2(S
2 × S2 − intB4, S3, Z), which is char-

acterstic (ref. K. Miyazaki and A. Yasuhara [17], T. Cochran and R.E. Gompf [5]).

Example 1.4. U ∼= T (2,−1)
(2,2)
−→ T (2, 3) ∼= T (3, 2)

(1,3)
−→ T (3, 5), then there exist a

properly embedded characteristic disk ∆ ⊂ S2 × S2#CP 2 − intB4 such that:

∂∆ = T (3, 5) and [∆] = −2α + 2β + 3γ ∈ H2(S
2 × S2#CP 2 − intB4, S3, Z).
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By Kirby Calculus [14], we can prove that any knot in S3 obtained from a smooth
slice knot by a finite series of twisting operations bounds a smooth properly embed-
ded disk ∆ in a punctured standard 4-manifold i.e. of the form

X4 = pCP 2#qCP 2#rS2 × S2 − intB4 (p, q, r ≥ 0).

The disk ∆ is called the twisting disk, and the twisting is called characteristic if the
second homology class [(∆, ∂∆)] ∈ H2(X

4, S3, Z) is characteristic.

The above remarks motivate the following definitions:

Definition 1.1. Let K be a smooth slice knot in B4, and k a knot in S3 such that

there exist a positive integer m and a family of Dehn disks D1,D2, ...,Dm, along

which, we perform successively a series of (ni, ωi)-twisting:

K
(n1,ω1)
−→ K(n1, ω1)...

(nm,ωm)
−→ K((n1, ω1), ..., (nm, ωm)) = k.

The characteristic invariant of the isotopy class of k, denoted by chn(k), is the mini-

mum over all such integers m among all diagrams of k with the following conditions:

(1) If ωi is even for some i ∈ {1, ...,m}, then ni is even.

(2) For any i ∈ {1, 2, ...m} we have | ωi |≤ n.

(3) There exist at least i ∈ {1, 2, ...m} such that | ωi |= n.

(4) ni 6= 0 for any i ∈ {1, 2, · · · ,m}.

chn(k) = 0 if either the four conditions above are not simultaneousely met; for any

{(ni, ωi)}
i=n
i=1 , or k is a smoothly slice knot.

Definition 1.2. The characteristic twisting power series expansion of a knot k in

S3 is the Laurent series:

Ch(k) =

∞
∑

n=0

chn(k)Xn

Definition 1.3. The characteristic twisting polynomial of degree N ≥ 0 of a knot

k in S3 is a Laurent polynomial in a variable X:

ChN (k) =
n=N
∑

n=0

chn(k)Xn
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Definition 1.4.
Chmin(k) = min{chn(k) > 0}∞n=0

Chmax(k) = max{chn(k)}∞n=0

Remark 1.1. Y. Ohyama [23] used Suzuki’s diagram [26] to show that any knot k in

S3 can be untied by at most two twistings. More Precisely,K
(1,ω)
−→ K(1, ω)

(1,ω′)
−→ k,

which answers Mathieu’s question. However, this twisting is not characteristic.

Question 1.1. Does any knot k in S3 have a characteristic twisting ? if yes, what

is the minimal number of characteristic twisting disks Chmin(k) ?

ChN does not detect neither amphicheirality nor invertibility i.e. ChN (k) = ChN (k∗)(=
ChN (−k)), where −k (resp. k∗) is the inverse (resp. the mirror-image knot) of k.
We hit the following conjecture:

Conjecture 1.1. Ch is a concordance invariant.

To answer partially Quesion 1.1, recall that the ∆-move is an unknotting operation
introduced by H. Murakami [21] in 1985 (see Figure 2). We denote by u∆(k) the
minimal number of times this unknotting operation needs to be used to transform
a diagram of k into a diagram of the unknot U , where the minimum is taken over
all diagrams of k and U .

Figure 2:

Theorem 1.1. 1 ≤ ch2(k) ≤ 3u∆(k).

The following Corollary is immediate from Theorem 1.1, answers partially Quesion

1.1.

Corrolary 1.1. Chmin(k) ≤ 3u∆(k).

Theorem 1.2.

(1) Ch3(31) = X2 + X3.

(2) Ch3(41) = 2X2 + 2X3.
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Unknot

0 0 1 1

XA1 X

0 2 2

0 1 131

41

51

5
2

61

ch0 ch1 ch2 ch3

U

0

20

A=1 or 2
X= 2  or 3

0 0 0 0

0 0 00 0

0

ch4

Figure 3:

The table in Figure 3 shows that Ch4 distinguishes knots up to five crossings. There
is no known example of a knot k in S3 such that chn(k) = 3 for some n ≥ 0.

The biggest problem in knot theory is to find a complete invariant that distinguishes
between knots. All known polynomial invariants of knots fail to be complete e.g. it
is well-known that mutants have the same polyomial invariants of knots. Sometimes,
the characteristic twisting of knots can be used to distinguish between knots, where
classical invariants fail. Note that the Alexander polynomial does not distinguish
between the reef and the granny, whereas the HOMFLY-PT (see [6], [25]) and
the Jones polynomial [10] don’t distinguish between 51 and 10132. We use the
characteristic twisting invariant to distinguish between these knots.

Theorem 1.3.

(1) ch3(31#3̄1) = 0 and ch3(31#31) = 2.

(2) ch3(51) = 1 and ch3(10132) = 2.

2. Preliminaries

In the following, b+
2 (M4) (resp. b−2 (M4)) is the rank of the positive (resp. negative)

part of the intersection form of M4. Let σ(M4) denotes the signature of M4, and
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ξ2 the self-intersection of a class ξ in H2(M
4, Z). For a knot k in S3, we denote

by σd(k) (resp. σ(k)) the Tristram d-signature (resp. the signature) of k (A. G.
Tristram [27]). To prove the statements, we need the following theorems:

The proof of the following theorem is based on Kirby Calculus [14], and remains
true if we substitute the unknot K by any smooth slice knot in B4.

Theorem 2.1. (Yamamoto -Yasuhara - Weintraub) Let K be a trivial knot in S3

and K(n, ω) be the knot obtained from K by (n, ω)-twisting, and K(n, ω)(m,ω′) is

the knot obtained from K(n, ω) by (m,ω′)-twisting: K
(n,ω)
−→ K(n, ω)

(m,ω′)
−→ K(n, ω)(m,ω′)

If n and ω are even, then there exist a disk D, properly embedded in S2×S2#(−m)CP 2−
intN(B4) such that in H2(M

4, ∂M4, Z) we have:

[D] =







−ωα + nω
2 β + ω′(γ̄1 + γ̄2 + ... + γ̄m) if n > 0,m > 0

ωα + nω
2 β + ω′(γ1 + γ2 + ... + γm) if n < 0,m < 0

There are several restrictions on embedding of surface of a given genus in a 4-
manifolds:

Theorem 2.2. (K. Kikuchi [13]) Let M4 be a closed, oriented and smooth 4-
manifold such that: (1) H1(M

4) has no 2-torsion; and (2) b±1
2 ≤ 3.

If ξ is a characteristic class of H2(M
4, Z) represented by an embedded 2-sphere in

M4, then:
ξ2 = σ(M4)

P. Gilmer and O. Ya Viro proved independently the following theorem:

Theorem 2.3. (P. Gilmer and O. Ya Viro [7], [28]) Let M4 be an oriented, compact
4-manifold with ∂M4 = S3, and K a knot in ∂M4. Suppose K bounds a surface
of genus g in M4 representing an element ξ in H2(M

4, ∂M4). Assume that ξ is
divisible by a prime number d.

(1) If d is odd, then we have: |
d2 − 1

2d
.ξ2 − σ(M4) − σd(k) |≤ dimH2(M

4; Zd) + 2g.

(2) If d is even, then we have: |
ξ2

2
− σ(M4) − σ(k) |≤ dimH2(M

4; Z2) + 2g.

Theorem 2.4. (M. Kervaire and J. Milnor [12]) Let M4 be a smooth closed oriented
simply connected 4-manifold. Suppose Σ is an embedded sphere in X of genus g so
that [Σ] is characteristic. Then

[Σ]2 ≡ σ(M4) (mod.16)
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(−2,+2)

(−1,+1)

(−1,+1)

Figure 4:

3. Proof of statements

Proof of Theorem 1.1.

• Figure 4 proves that ch2(k) ≤ 3u∆(k).

To prove Theorem 1.1, we need the following lemma:

Lemma 3.1 If a knot k in S3 is obtained by (n, ω)-twisting from the unknot K

along C, then the mirror-image knot k∗ is obtained by (−n, ω)-twisting from K,
and the inverse knot −k is obtained by (n,−ω)-twisting from K.

Proof. Assume that k is a knot in S3 obtained from the unknot K by (n, ω)-
twisting along the trivial knot C = ∂D, where D is the Dehn disk of k. Denote by
(mC , lC) (resp. (mC∗ , lC∗) ) a paire of preferred meridian-longitude of C (resp. C∗).

Then performing a (−
1

n
)- Dehn surgery along C corresponds to a homeomorphism

φn : V 7→ N(C) such that φn(mV ) = mC l−n
C . There exist a homeomorphism

Φ : E = S3 − intN(U ∪ C) 7→ Φ(E) = S3 − intN(U ∪ C)∗ = S3 − intN(U∗ ∪ C∗)

mC 7→ Φ(mC) = m−1
C∗

lC 7→ Φ(lC) = lC∗
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(U ∪ C)∗ = U∗ ∪ C∗

= Φ(U) ∪ Φ(C)

We denote E(k) = E∪φn
V . The homeomorphism Φ can be extended to a homeo-

morphism: Φ̃ : E(k) 7→ Φ(E)∪Φ◦φn
V such that Φ(V ) = N(C∗).

Φ ◦ φn(mV ) = Φ(φn(mV ))
= Φ(mC l−n

C )
= mC∗

Therefore,

Φ̃(mC l−n
C ) = m−1

C∗ l
−n
C∗ and Φ̃(mk) = mk∗. Since the linking number lk(U,C) = lk(U∗, C∗)

and E(k∗) = E(U∗

−n); then k∗ is obtained by (−n, ω)-twisting from the unknot U∗.

To prove that −k is obtained by (n,−ω)-twisting along the unknot, we consider the
homeomorphism,

Ψ : S3 − intN(U ∪ C) 7→ S3 − int(−(U ∪ C))

mC 7→ Ψ(mC) = m−1
C

lC 7→ Ψ(lC) = l−1
C

−(U ∪ C) = (−U) ∪ (−C)

= Ψ(U) ∪ Ψ(C)

We denote E(k) = E∪φn
V . The homeomorphism Ψ can be extended to a homeo-

morphism: Ψ̃ : E(k) 7→ Ψ(E)∪Ψ◦φn
V such that Ψ(V ) = N(C).

Ψ ◦ Ψn(mV ) = Ψ(φn(mV ))
= Ψ(mC l−n

C )

= m−1
C l−n

C

Therefore,

Ψ̃(mC lnC) = m−1
C l−n

C and Ψ̃(mk) = m−k. Therefore, E(−k) = E((−U)n). Notice
that the linking number lk(U,C) = −lk(−U,C). Therefore, E(−k) = E((−U)n);
which implies that −k is obtained by (n,−ω)-twisting from the unknot −U .

Proof of Theorem 1.2. From now on, U0 denotes a smooth slice knot in B4. Notice
also that whenever we assume that chi(k) = 1 for some i ≥ 0, then by Definition
1.1 and Lemma 3.1, we can assume that the number of twisting n > 0.
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(1) To prove that Ch3(31) = X2 + X3 is equivalent to proving that

(ch0(31), ch1(31), ch2(31), ch3(31)) = (0, 0, 1, 1).

(i) To prove that ch0(31) = 0, assume for a contradiction that ch0(31) = m > 0.
By Definition 1.1, there exist a finite series of even integers n1, · · · , nm

such that:

U0
(n1,0)
−→ U0(n1, 0) −→ · · ·

(nm,0)
−→ 31

Therefore there exist a properly embedded disk D ⊂ mS2 × S2 − intB4

such that ∂D = 31 and [D] = 0 ∈ H2(mS2 × S2 − intB4, S3, Z). Note

that U
(−1,3)
−→ 3̄1. Therefore there exist a properly embedded disk ∆ ⊂ CP 2 − intB4

such that ∂∆ = 3̄1 and [∆] = 3γ ∈ H2(CP 2 − intB4, S3, Z). Gluing the
two characteristic twisting disks along 31 yields a characteristic sphere
[D ∪ ∆] = [S] whose homology is:

[S] = 3γ ∈ H2(mS2 × S2#CP 2, Z)

This would contradict Theorem 2.4, and then ch0(31) = 0.

(ii) To prove that ch1(31) = 0, assume for a contradiction that ch1(31) = m,
where m > 0. By Definition 1.1, 31 would be obtained by a finite series
of (ni, ωi)-twisting from U0 (i = 1, 2, . . . ,m), where ωi ∈ {0,±1} for
i = 1, 2, . . . ,m; or equivalentely

U0
(n1,0)
−→ U0(n1, 0) −→ · · ·

(np,0)
−→ · · ·

(n
′

1
,ǫ
′

1
)

−→ · · ·
(n

′

q
,ǫ
′

q
)

−→ · · ·
(n

′′

1
,ǫ
′′

1
)

−→ · · · −→ · · ·
(n

′′

r
,ǫ
′′

r
)

−→ 31

(a) m = p + q + r; and

(b) ni is even for i = 1, . . . , p; and

(c) n
′

j > 0 and n
′′

ℓ < 0 and | ǫ
′

j |=| ǫ
′′

ℓ |= 1 for j = 1, . . . , q and ℓ =
1, . . . , r.

Note that U
(−1,3)
−→ 3̄1. By a similar argument as above, gluing the two

characteristic twisting disks along 31 yields a characteristic sphere whose
homology is

[S] = 3γ +

i=Q
∑

i=1

γ̄
′

i +

i=R
∑

i=1

γ
′′

i ∈ H2(M
4, Z)

Where Q =

i=q
∑

i=1

n
′

i and R =

i=r
∑

i=1

n
′′

i and M4 = CP 2#pS2 × S2#QCP 2#RCP 2.

This would contradict Kervaire-Milnor’s Theorem 2.4.

(iii) Since T (2, 1)
(2,2)
−→ 31 and T (−3, 1)

(1,3)
−→ 31 then ch2(31) = 1 and ch3(31) = 1
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(−2,0)
31

Figure 5:

(2) To prove that Ch3(41) = 2X2 + 2X3 is equivalent to proving that

(ch0(41), ch1(41), ch2(41), ch3(41)) = (0, 0, 2, 2).

(i) To prove that ch0(41) = 0, assume for a contradiction that ch0(41) = m,
where m > 0. By Definition 1.1, 41 would be obtained by a finite series
of (ni, 0)-twisting from U0 and ni is even (i = 1, 2, . . . ,m) i.e.

U0
(n1,0)
−→ U0(n1, 0) −→ · · ·

(nm,0)
−→ 41

Figure 5 shows that U
(2,0)
−→ 31

(1,3)
−→ 41. Gluing the two twisting disks along

41 yields a smooth sphere whose homology is:

[S] = 3γ̄ ∈ H2(CP 2#mS2 × S2, Z)

This would contradict Kervaire-Milnor’s Theorem 2.4.

(ii) Assume for a contradiction that ch1(41) = m, where m > 0. By Definition
1.1, 41 would be obtained by a finite series of (ni, ωi)-twisting from U0

(i = 1, 2, . . . ,m), where ωi ∈ {0,±1} for i = 1, 2, . . . ,m; or equivalentely

U0
(n1,0)
−→ U0(n1, 0) −→ · · ·

(np,0)
−→ · · ·

(n
′

1
,ǫ
′

1
)

−→ · · ·
(n

′

q
,ǫ
′

q
)

−→ · · ·
(n

′′

1
,ǫ
′′

1
)

−→ · · · −→ · · ·
(n

′′

r
,ǫ
′′

r
)

−→ 41

(a) m = p + q + r; and

(b) ni is even for i = 1, . . . , p; and

(c) n
′

j > 0 and n
′′

ℓ < 0 and | ǫ
′

j |=| ǫ
′′

ℓ |= 1 for j = 1, . . . , q and ℓ =
1, . . . , r.

Note that U
(1,3)
−→ 31

(2,0)

−→ 41 as depicted in Figure 5. By a similar argument
as above, gluing the two characteristic twisting disks along 41 yields a
characteristic sphere whose homology is

[S] = 3γ̄ +

i=Q
∑

i=1

γ̄
′

i +
i=R
∑

i=1

γ
′′

i ∈ H2(M
4, Z)
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Where Q =

i=q
∑

i=1

n
′

i and R =

i=r
∑

i=1

n
′′

i and M4 = CP 2#(p + 1)S2 × S2#QCP 2#RCP 2.

This would contradict Kervaire-Milnor’s Theorem 2.4.

(iii) To prove that ch2(41) = 2, note that Figure 5 shows that U
(2,2)
−→ 31

(2,0)
−→ 41

and then ch2(41) ≤ 2. The assumption ch2(41) = 1 would contradict
Gilmer-Viro’s Theorem 2.1.(1); and therefore ch2(41) = 2.

(iv) To prove that ch3(41) = 2, Figure 5 also proves that U
(1,3)
−→ 31

(2,0)
−→ 41. The

assumption ch3(41) = 1 would contradict Theorem 2.1.(2) with d = 3.

Proof on Theorem 1.3.

(1) Since 31#3̄1 is smoothly slice, then by Definition 1.1, ch3(31#3̄1) = 0. K.
Miyazaki and A. Yasuhara proved in [17] that 31#31 is non-twisted. It is easy

to check that U
(1,3)
−→ 31

(1,3)
−→ 31#31,and therefore ch3(31#31) = 2.

(−1,3)
T(−2,5)

Figure 6:

(2) U
(1,3)
−→ T (2, 5) (Goda-Hayashi-Song [8]), then ch3(T (2, 5)) = 1. To show that

ch3(10132) = 2, notice that 10132
(−1,3)
−→ T (−2, 5)

(2,2)
−→ U (see Figure 6), or equiv-

alentely, by Lemma 3.1, U
(2,2)
−→ T (−2, 5)

(−1,3)
−→ 10∗132. Then ch3(10132) ≤ 2.

Assume for a contradiction that ch3(10132) = 1, then U
(n,3)
−→ 10132 where

n > 0. Therefore there exist a properly embedded disk D ⊂ nCP 2 − intB4

such that ∂D = 10132 and [D] = 3
i=n
∑

i=1

γ̄i ∈ H2(nCP 2 − intB4, S3, Z). Note

that σd(10132) = 0 for any prime d ≥ 2. Indeed, since the argument of the

roots of the Alexander polynomial of 10132 do not lie in [
2π

3
, π], then the

Tristram d-signature of 10132 do not depend on d (see K. Miyazaki and A.
Yasuhara [20]). Since σ(10132) = 0, then σd(10132) = 0 for any prime d ≥ 2.
The assumption ch3(10132) = 1 would contradict Theorem 2.1.(2) with d = 3.
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