
msp
Algebraic & Geometric Topology 14 (2013) 101–999

The minimal genus problem in CP 2 # CP 2

MOHAMED AIT NOUH

In this paper, we give two infinite families of counterexamples and finite positive
examples to a conjecture on the minimal genus problem in CP 2 # CP 2 , proposed by
Lawson [10].

57Q25; 57Q45, 57N70

This paper is dedicated to the memory of my PhD thesis advisor Yves Mathieu.

1 Introduction

Let X be a smooth, closed, oriented, simply connected 4–manifold, and let bC
2
.X /

(resp. b�
2
.X /) be the rank of the positive (resp. negative) part of the intersection form

of X . The minimal genus problem is concerned with finding the genus function GX

defined on H2.X IZ/ as follows. For ˛ 2H2.X;Z/, consider

GX .˛/Dminfgenus.†/ j†�X represents ˛; ie, Œ†�D ˛g;

where † ranges over closed, connected, oriented surfaces smoothly embedded in the
4–manifold X . Note that GX .�˛/D GX .˛/ and GX .˛/ � 0 for all ˛ 2H2.X;Z/
(cf Gompf and Stipsicz [5]).

The minimal genus problem was solved for the 4–manifolds CP2 , S2 � S2 and
CP2 # CP2 ; see Kronheimer and Mrowka [8] and Ruberman [15]. For more results
of this kind, we leave details to Lawson’s expository paper [10]. The minimal genus
problem in the case of CP2 is well known. In this paper, we treat CP2 # CP2 which
has bC

2
D 2 and admits no algebraic structure since a simple characteristic class

argument shows that the tangent line bundle admit no complex structure (cf Gompf
and Stipsicz [5]); in regards of Lawson’s conjecture [10].

Conjecture 1.1 The minimal genus of .m; n/ 2 H2.CP2 # CP2/ D H2.CP2/˚

H2.CP2/ is given by
�
m�1

2

�
C

�
n�1

2

�
, and it is the genus realized by the connected sum

of the complex projective curves in each factor.
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102 M. Ait Nouh

Taking the connected sum of the complex projective curves in each factor represent-
ing respectively m1 2 H2.CP2

IZ/ and n2 2 H2.CP2
IZ/, where 1 and 2 are

the standard generators of H2.CP2 # CP2/, yield a surface representing .m; n/ 2
H2.CP2 # CP2

IZ/. Then, for any .m; n/ 2H2.CP2 # CP2
IZ/, the minimal genus

problem function satisfies

GCP2#CP2..m; n//�GCP2.m/CGCP2.n/:

The minimal genus of .m; n/2H2.CP2#CP2
IZ/ is bounded above by

�
m�1

2

�
C

�
n�1

2

�
,

by the positive answer to Thom’s conjecture; see Kronheimer and Mrowka [7]. This
bound is sharp if jmj � 2 and jnj � 2 since each class can be represented by a sphere
in CP2 # CP2 . The simplest case is the class .3; 2/ 2H2.CP2 # CP2/, which is still
unresolved. This class can be represented by an embedded torus, but it is unknown
whether it can be represented by an embedded sphere [10]. Surprisingly enough, even
if Conjecture 1.1 seems to be far from being true, there are some nontrivial positive
examples. Therefore, it will be interesting to rather find the complex projective curves
in CP2 # CP2 for which Lawson’s conjecture holds.

In Section 2, we prove Theorem 1.1 which exhibits two infinite families of counterex-
amples.

Theorem 1.1 Conjecture 1.1 fails for the following infinite families:

(1) .2p; d/ 2 H2.CP2 # CP2
IZ/ where d is a possible degree of T .p; 4p � 1/

in CP2 , for any p � 2, and T .p; 4p� 1/ denotes the .p; 4p� 1/–torus knot;

(2) .m; 0/ 2H2.CP2 # CP2
IZ/ for any m� 3.

In Section 3, we prove Proposition 1.1 that exhibits two nontrivial positive examples.

Proposition 1.1 The minimal genus of the pairs .3; 3/ and .6; 6/ 2H2.CP2 # CP2/

are respectively 2 and 20.

Throughout this paper, we work in the smooth category. All orientable manifolds
will be assumed to be oriented unless otherwise stated. In particular, all knots are
oriented. Recall that CP2 is the closed 4–manifold obtained by the free action of
C�DC�f0g on C3�f.0; 0; 0/g defined by �.x;y; z/D .�x; �y; �z/ where � 2C�

ie CP2
D .C3�f.0; 0; 0/g/=C� . An element of CP2 is denoted by its homogeneous

coordinates Œx W y W z�, which are defined up to the multiplication by � 2 C� . The
fundamental class of the submanifold H D fŒx W y W z� 2 CP2

j x D 0g.H Š CP1/

generates the second homology group H2.CP2
IZ/ (cf [5]). Since H ŠCP1 , then the

standard generator of H2.CP2
IZ/ is denoted, from now on, by  D ŒCP1�. Therefore,
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The minimal genus problem in CP 2 # CP 2 103

the standard generator of H2.CP2
� B4IZ/ is CP1 � B2 � CP2

� B4 with the
complex orientations. A class � 2H2.CP2

�B4; @.CP2
�B4/IZ/ is identified with

its image by the homomorphism

H2.CP2
�B4; @.CP2

�B4/IZ/ŠH2.CP2
� int.B4/IZ/ �!H2.CP2

IZ/:

Let d be an integer, then the degree d smooth slice genus of a knot K in CP2 is
defined as

gCP2.d;K/

Dminfgenus.†/ j @†DK and Œ†; @†�D d 2H2.CP2
�B4; @.CP2

�B4/IZ/g;

where † ranges over connected, oriented, smooth surfaces properly embedded in
CP2

�B4 .

If such a surface exists, then we call d a possible degree of K in CP2 . By the above
identification, we also have Œ†�D d 2H2.CP2

�B4IZ/. Then the CP2 –genus of
a knot K is defined as

gCP2.K/DminfgCP2.d;K/ j d is a possible degree of Kg:

A similar definition could be made for any 4–manifold and that this is a generalization
of the 4–ball genus; see the author [13].

Acknowledgements The author would like to thank heartily the referee for his in-
sight and helpful comments and the Editor Professor Akio Kawauchi for his patience,
throughout the accomplishment of this paper. He also wants to thank the Departments
of Mathematics at the University of California, Riverside and the University of Texas
at El Paso for their hospitality.

2 Proof of Theorem 1.1

Our counterexamples to Conjecture 1.1 are based on twisting operations of knots
defined as follows.

n

n–twisting n–full
twistings

Figure 1
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104 M. Ait Nouh

�1

�1

T .1;p/

�1

�1

�1

T .�p; 4p� 1/

Figure 2: T .1;p/Š U
.�1;2p/
�����! T .�p; 4p� 1/

Let K be a knot in the 3–sphere S3 , and D2 a disk intersecting K in its interior.
Let n be an integer. A .�1

n
/–Dehn surgery along @D2 changes K into a new knot Kn

in S3 . Let ! D lk.@D2;K/. We say that Kn is obtained from K by .n; !/–twisting
(or simply twisting). Then we write

K
.n;!/
���!Kn:

We say that Kn is n-twisted if K is the trivial knot (see Figure 1). An example of
interest is illustrated in Figure 2, where T .p; q/ .0< p < q and p and q are coprime)
denotes the .p; q/–torus knot; see Burde and Zieschang [3].

The 4–ball genus (resp. 3–genus) of a knot k in S3 , denoted by g�.k/ (resp. g.k/),
is the minimum number of genera of all smooth compact connected and orientable
surfaces bounded by k � @B4 D S3 in B4 (resp. S3 ). A knot is called positive, if it
has a positive diagram, ie a diagram with all crossings positive. To deny Conjecture 1.1,
we need the following four lemmas.

Lemma 2.1 Let K0 be a knot in S3 with 4–ball genus g� .

(a) If K is a knot obtained by a .�1; !/–twisting from the knot K0 , then K bounds
a properly embedded genus g� surface in CP2 with possible degree ! .

(b) If K0

.�1;m/
�����!Km

.�1;n/
����!K , then K bounds a properly embedded genus g� in

CP2 # CP2
�B4 representing Œ†g� �Dm1C n2 2H2.CP2 # CP2;S3;Z/.

Proof (a) As shown in Figure 3, let D be a disk on which the .�1; !/–twisting is
performed. Note that the .C1/–Dehn surgery on @D changes K0 to K . Regard K0

and D as contained in the boundary of a 4–dimensional handle h0 . Then attach a
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The minimal genus problem in CP 2 # CP 2 105

2–handle h2 , to h0 along @D with framing C1. The resulting 4–manifold h0[h2 is
CP2

�B4 (see Figure 3). Let .†g� ; @†g�/� .B4; @B4 Š S3/ be the orientable and
compact surface with @†g� DK0 . Since lk.K0; @D/D ! , then we can check that
Œ†g� �D ! 2H2.CP2

�B4;S3IZ/.

K0

�1

D

� @h0 Š B4

K

� @.h0[ h2/

ŠCP 2
�B4

.�1/–full
twisting

Figure 3

(b) As shown in Figure 4, let D1 and D2 be the disks on which the .�1;m/–twisting
and .�1; n/–twisting are respectively performed. Note that the .C1/–Dehn surgery on
respectively @D1 and @D2 changes K0 to K . Regard K0;D1 and D2 as contained
in the boundary of a 4–dimensional handle h0 . Then attach the 2–handles h2

1
and h2

2

along @D1[@D2 with the same respective framing C1. The 4–manifold h0[h2
1
[h2

2

is CP2 # CP2
� B4 . Let .†g� ; @†g�/ � .B4; @B4 Š S3/ be the orientable and

compact surface with @†g� D K0 . Since lk.@D1;K0/ D m and lk.@D2;K0/ D n,
then Œ†g� �Dm1C n2 2H2.CP2 # CP2

�B4;S3IZ/.

K0

�1

D1

�1

D2

� @h0

Š B4

K

� @.h0[ h2
1
[ h2

2
/

ŠCP 2 # CP 2
�B4

.�1/–full
twisting

.�1/–full
twisting

Figure 4

This completes the proof.

Lemma 2.2 T .�p; 4p ˙ 1/ for p � 2 is smoothly slice in CP2 with a possible
degree d D 2p .
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106 M. Ait Nouh

Proof Figure 2 proves that T .�p; 4p�1/ is obtained from the trivial knot T .�1;p/

by a single .�1; 2p/–twisting. Then, the proof of Lemma 2.2 is a straightforward
consequence of Lemma 2.1.

Lemma 2.3 We have gCP2.T .p; q//�
.p�1/.q�1/

2
� 1.

Proof Note that T .p; q/ is obtained from T .2; 3/ by adding .p � 1/.q � 1/ � 2

half-twisted bands. Since T .2; 3/ is .�1/–twisted (cf [13]), then T .2; 3/ is smoothly
slice in CP2 . This implies that there is a genus ..p� 1/.q� 1/=2/� 1 concordance
between T .2; 3/ and T .p; q/, which proves Lemma 2.3.

This let us hit to the following problem (cf [13]).

Problem 2.1 Show that gCP2.T .p; q//D
.p�1/.q�1/

2
� 1.

We gave positive examples to this problem for a finite family of .˙2; q/–torus knots [13].

To prove Lemma 2.4, recall that a knot in the 3–sphere obtained from the torus knot
T .p; q/ by performing s–times full twists on adjacent r –strands of the parallel p–
strings of T .p; q/ is called a twisted torus knot, denoted by T .p; q; r; s/ as depicted
in Figure 5 (we refer the reader to Callahan, Dean and Weeks [4] for more details).

We have

(1) u.Ki/D u� i , 0� i � u (in particular, Ku is the trivial knot),

(2) two succeeding knots of the sequence are related by one crossing change,

(3) uD u.K/ is the unknotting number of K .

Furthermore, the set of respective crossings positions fC1;C2; : : : ;Cu�1;Cug at which
these crossing changes are performed in the following order:

K0

C1
��!K1

C2
��!K2 � � �

Cu
��!Ku;

where uD u.K/, is called a minimal U –crossing data for the knot K . An example
can be found in Vikas and Madeti [18] for the case of torus knots (see Figure 6 in the
case of a .5; 4/–torus knot).

Lemma 2.4 Let K be a knot such that u.K/D g�.K/, then g�.K1/� g�.K/� 1.

Proof By the unknotting inequality we have g�.K1/�u.K1/. Since g�.K/Du.K/,
and by the above construction u.K1/D u.K/� 1, then g�.K1/� g�.K/� 1.

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
1 1/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
20 1/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
39 1/2

Algebraic & Geometric Topology, Volume 14 (2013)



The minimal genus problem in CP 2 # CP 2 107

r strands

s full twists
.p; q/–torus knot braid

T .p; q; r; s/

Figure 5: Twisted torus knot T .p; q; r; s/

C1 C4 C6

C2
C5

C3

Figure 6: Minimal U –crossing data for T .5; 4/

Remark 2.1 It is well-known that if K is a positive knot, then u.K/D g�.K/ (See
Nakamura [12], Shibuya [16] and Przytycki [14] for proofs). Also, Baader classified
quasipositive knots for which this equality holds (cf [1]).
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108 M. Ait Nouh

†g �CP 2
�B4

T .p; 4p� 1/

T .�p; 4p� 1/

��CP 2
�B4

Figure 7: Gluing of surfaces technique

Proof of Theorem 1.1 By Lemma 2.2, T .�p; 4p � 1/ for p � 2 is smoothly slice
in CP2 with degree d D 2p . Then, there is a smooth disk .�; @�/� .CP2

�B4;S3/

such that @�D T .�p; 4p�1/ and Œ��D 2p in H2.CP2
�B4;S3IZ/. In the other

hand, there is a surface .†g; @†g/� .CP2
�B4;S3/ such that @†gDT .�p; 4p�1/

and Œ†g� D d 2 H2.CP2
�B4;S3IZ/, where g D gCP2.T .p; 4p � 1//. Let 1

and 2 be the standard generators of H2.CP2 # CP2
IZ/. Then, the genus g closed

surface †D�[†g in CP2 #CP2 satisfies †�D 2p1Cd2 in H2.CP2 #CP2
IZ/

(see Figure 7). If Conjecture 1.1 were true, then the genus of † which is equal to
gCP2.T .p; 4p� 1// would satisfy

.2p� 1/.2p� 2/

2
C
.jd j � 1/.jd j � 2/

2
� gCP2.T .p; 4p� 1//:

By Lemma 2.3, we have

.2p� 1/.2p� 2/

2
C
.jd j � 1/.jd j � 2/

2
�
.p� 1/.4p� 2/

2
� 1:

Or equivalently,

.2p� 1/.p� 1/C
.jd j � 1/.jd j � 2/

2
� .p� 1/.2p� 1/� 1;

and it contradicts the positivity of ..jd j � 1/.jd j � 2//=2� 0 for d 2 Z.
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The minimal genus problem in CP 2 # CP 2 109

To prove that Conjecture 1.1 fails for .m; 0/ 2H2.CP2 # CP2
IZ/ for any m� 3, we

have two cases.

Case 1: mD 2nC 1 for n� 1 The proof of this case is based on Figure 8 showing
that

T .2; 2n� 1/
.�1;2nC1/
�������! T .�.2n� 1/; 2nC 1; 2;�1/

.�1;0/
����! T .�.2n� 1/; 2nC 1/:

By the positive answer to Milnor’s conjecture (cf Kronheimer and Mrowka [7]), the
4–ball genus of T .2; 2n � 1/ and T .2n � 1; 2n C 1/ are respectively n � 1 and
2n.n� 1/. As depicted in Figure 9, Lemma 2.1 yields the existence of a compact
surface .†n�1; @†n�1/� .B

4; @B4 Š S3/ with @†n�1 D T .�.2n� 1/; 2nC 1/. As
depicted in Figure 9, Lemma 2.1, we have

Œ†n�1�D .2nC 1/1 2H2.CP2 # CP2
�B4;S3

IZ/:

Let now .†2n.n�1/; @†2n.n�1//� .B
4; @B4 Š S3/ be a compact surface with

@†2n.n�1/ D T .2n� 1; 2nC 1/:

Gluing †n�1 and †2n.n�1/ along their boundaries yield a closed surface

†D†n�1[†2n.n�1/ �CP2 # CP2

representing .2nC 1/1 2 H2.CP2 # CP2/. If Conjecture 1.1 were true, then the
genus of † which is equal to n� 1C 2n.n� 1/ would satisfy

.2nC 1� 1/.2nC 1� 2/

2
� n� 1C 2n.n� 1/;

or equivalently, 2n2� n� 2n2� n� 1, an obvious contradiction.

Case 2: mD 2p for p � 2 Figure 2 shows that T .�p; 4p � 1/ is obtained from
the trivial knot T .�1;p/ by a single .�1; 2p/–twisting. Let fC1;C2; : : : ;Cu�1;Cug

be a U –crossing data for T .�p; 4p � 1/. Changing the crossing C1 from negative
to positive is equivalent to performing a .�1; 0/–twisting along the crossing C1 (see
Figure 10) and this yields that

T .�1;p/
.�1;p/
����! T .�p; 4p� 1/

.�1;0/
����! T .�p; 4p� 1; 2;C1/;

where T .�p; 4p � 1; 2;C1/ is a twisted torus knot, as shown in Figure 10. By
Lemma 2.4, we have that the 4–ball genus of T .�p; 4p � 1; 2;C1/ satisfies the
inequality g� � ..p�1/.4p�2//=2�1. Therefore, by a similar argument as in Case 1
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110 M. Ait Nouh

above, if Conjecture 1.1 were true for .2p; 0/ 2 H2.CP2 # CP2
IZ/ for any p � 2,

then we would have ..2p� 1/.2p� 2//=2� g� , which yields that

.2p� 1/.2p� 2/

2
�
.p� 1/.4p� 2/

2
� 1;

or equivalently, .2p� 1/.p� 1/� .p� 1/.2p� 1/� 1, an obvious contradiction.

Corollary 2.1 The class .3; 0/2H2.CP2 #CP2/ can be represented by a sphere, and
therefore, it is the smallest counterexample to Conjecture 1.1.

Proof It follows immediately from Case 1 if nD 1.

2–strands

�1

T .2; 2n� 1/

.�1; 2nC 1/–twisting

�1

.�1; 0/–twisting

T .�.2n� 1/; 2nC 1/

T .�.2n�1/;2nC1;2;�1/

.2n�1/–strands

(-1)–full twisting

.�1/–full twisting

Figure 8: T .2; 2n � 1/
.�1;2nC1/
�������! T .�.2n � 1/; 2n C 1; 2;�1/

.�1;0/
����!

T .�.2n� 1/; 2nC 1/
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The minimal genus problem in CP 2 # CP 2 111

T .�.2n� 1/; 2nC 1/

T .2n� 1; 2nC 1/

B4

†n�1 �CP 2 # CP 2
�B4

†2n.n�1/ � B4

Figure 9: Gluing of surfaces technique

C1

�1

Figure 10

3 Proof of Proposition 1.1

To prove Proposition 1.1, we need Lemma 3.1, Theorem 3.1 and Lemma 3.2 as well as
Lemma 3.3. For this purpose, we recall some basic definitions. In what follows, let X

be a smooth, closed, oriented, simply connected 4–manifold, then the second homology
group H2.X;Z/ is finitely generated (we leave details to Spanier’s book [17]). The
ordinary form qX W H2.X;Z/�H2.X;Z/ �! Z given by the intersection pairing for
2–cycles such that qX .˛; ˇ/D ˛ �ˇ , is a symmetric, unimodular bilinear form. The
signature of this form, denoted �.X /, is the difference between the number of positive
and negative eigenvalues of a matrix representing qX . Let bC

2
.X / (resp. b�

2
.X /) be
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the rank of the positive (resp. negative) part of the intersection form of X . The second
Betti number b2 D bC

2
C b�

2
and the signature is �.X /D bC

2
� b�

2
.

A second homology class � 2H2.X;Z/ is said to be characteristic provided that � is
dual to the second Stiefel–Whitney class w2.X /, or equivalently

(1) � �x � x �x .mod 2/

for any x 2H2.X IZ/ (we leave details to Milnor and Stasheff’s book [11]).

Lemma 3.1 .a; b/ 2H2.CP2 # CP2
IZ/ is characteristic if and only if a and b are

both odd.

Proof If .a; b/2H2.CP2 #CP2
IZ/ is characteristic, then .a; b/ �.1; 0/� 1 .mod 2/

and .a; b/ � .0; 1/ � 1 .mod 2/. This yields that both a and b are odd. Conversely,
let � D .a; b/ 2H2.CP2 # CP2

IZ/ and assume that a and b are both odd. Then for
any x D .x1;x2/ 2H2.CP2 # CP2

IZ/, the identity (1) is equivalent to ax1C bx2 �

x2
1
Cx2

2
.mod 2/. Since xi � x2

i .mod 2/ for i D 1; 2 and a� 1 and b � 1 .mod 2/,
then (1) holds. This proves Lemma 3.1.

Theorem 3.1 (Bryan [2]) Let X be a smooth closed oriented and simply connected
4–manifold. We suppose † is an embedded surface in X of genus g and Œ†� is
divisible by 2. We assume that 1

2
† is characteristic, bC

2
> 1, and †�†

4
� �.X / � 0.

Then

g �
5

4

�
† �†

4
� �.X /

�
C 2� b2.X /:

A proof of the following lemma can be found in [10, page 401].

Lemma 3.2 (Kronheimer and Mrowka [9]) Let X be a smooth closed, connected and
oriented 4–manifold. Let a.†/D 2g.†/� 2�† �†. If � 2H2.X IZ/ is a homology
class with � � � � 0 and †� is a surface representing � and g � 1 when †� �†� D 0,
then for any r > 0, the class r� can be represented by an embedded surface †r� with

a.†r�/D ra.†�/:

Remark 3.1 Note that in particular, if X D CP2 # CP2 , then a.†2�/D 2a.†�/ is
equivalent to

g.†2�/D 2g.†�/C†� �†� � 1:
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Proof The computation

a.†2�/D 2a.†�/” 2g.†2�/� 2�†2� �†2� D 2.2g� 2�†� �†�/

” 2g.†2�/� 2� 4†� �†� D 2.2g� 2�†� �†�/

” g.†2�/D 2g.†�/C†� �†� � 1

completes the proof.

Recall that the knot obtained from k by inverting the orientation is called the inverted
knot and denoted �k . The mirror image of k or mirrored knot is denoted by k� ; it is
obtained by a reflection of k in a plane [3, page 15]. In what follows, we let xk D�k�

denote the inverse of the mirror image of k .

Lemma 3.3 (1) The 4–ball genus of positive knots in S3 is additive under the
connected sums.

(2) For any knot k in S3 , g�.k/D g�.xk/.

Proof It is well-known that g�.k/Dg.k/ for any positive knot [12]. Since the 3–ball
genus of knots is additive under connected sum [3], and g.k/D g.xk/ then the proofs
of the statements in Lemma 3.3 are easily proven.

Proof of Proposition 1.1 To prove Proposition 1.1 for .3; 3/ 2H2.CP2 # CP2
IZ/,

let † be a genus g surface such that Œ†�D 31C32 2H2.CP2 #CP2/. Theorem 3.1
yields that g � 2. Indeed, Lemma 3.1 implies that � D Œ†� 2 H2.CP2 # CP2/ is a
characteristic class with †�†D 18. In virtue of Lemma 3.2, the class 2�D 61C62 2

H2.CP2#CP2/ can be represented by an embedded surface †2� satisfying the identity
a.†2�/D 2a.†/. Since †2� �†2� D 4† �†, then the estimate in Theorem 3.1,

g.†2�/�
5

4

�
†2� �†2�

4
� �.X /

�
C 2� b2.X /;

is equivalent by Remark 2.1 to

2gC 17� 5
4
.† �†� �.X //C 2� b2.X /;

where X DCP2 # CP2 . This implies that g � 2.

To prove that g � 2, it is enough to exhibit a smooth closed genus two surface
†2�CP2 #CP2 representing 31C32 2H2.CP2 #CP2/. Indeed, Figure 11 shows
that

T .1; 2/
.�1;3/
����! T .�2; 3/;
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and therefore,

T .1; 2/ # T .1; 2/
.�1;3/
����! T .1; 2/ # T .�2; 3/

.�1;3/
����! T .�2; 3/ # T .�2; 3/:

T .1; 2/ �1

T .�2; 3/

Figure 11: T .1; 2/
.�1;3/
����! T .�2; 3/

By Lemma 2.1, there is a disk ��CP2 #CP2
�B4 so that @�DT .�2; 3/#T .�2; 3/

and Œ��D31C32 2H2.CP2#CP2
�B4;S3;Z/. Since the 4–ball genus of T .2; 3/

is one and T .2; 3/ is a positive knot (see Kawauchi [6]), then Lemma 3.3 yields that
the 4–ball genus of xk D T .2; 3/ # T .2; 3/ is two. Let .†2; @†2/� .B

4; @B4 Š S3/

be an orientable and compact surface with @†2D T .2; 3/#T .2; 3/. Gluing � and †2

along their boundaries yield a closed genus 2 surface † D �[†2 � CP2 # CP2

representing 31C 32 2H2.CP2 # CP2/ (see Figure 12).

k

xk

B4

��CP 2 # CP 2
�B4

Figure 12: Gluing of surfaces technique

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
1 1/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
20 1/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
39 1/2

Algebraic & Geometric Topology, Volume 14 (2013)



The minimal genus problem in CP 2 # CP 2 115

�1

�1

T .1;p/ # T .1; q/

�1

�1

Figure 13: T .1;p/ # T .1; q/
.�1;2p/
�����! T .�p; 4p � 1/ # T .1; q/

.�1;2q/
�����!

T .�p; 4p� 1/ # T .�q; 4q� 1/

To prove Proposition 1.1 for the pair .6; 6/2H2.CP2 #CP2
IZ/, we first notice that if

T .p; q/ denotes the .p; q/–torus knot for 0< p < q with p and q are coprime, then
the knot drawn in Figure 13 is ambient isotopic to the trivial knot T .1;p/ # T .1; q/,
Henceforth,

T .1;p/ # T .1; q/
.�1;2p/
�����! T .�p; 4p� 1/ # T .1; q/

.�1;2q/
�����! T .�p; 4p� 1/ # T .�q; 4q� 1/:

By Lemma 2.1, there exists a properly embedded disk ��CP2 #CP2
�B4 such that

@�D T .�p; 4p� 1/ # T .�q; 4q� 1/ and Œ��D 2p1C 2q2 , where 1 and 2 are
the standard generators of H2.CP2 # CP2

�B4;S3IZ/. By the positive answer to
Milnor’s conjecture by Kronheimer and Mrowka [7] and Lemma 3.3(1), the 4–ball
genus of T .p; 4p� 1/ # T .q; 4q� 1/ is .p� 1/.2p� 1/C .q� 1/.2q� 1/. Let †g�

be an oriented and compact surface properly embedded in B4 and such that

@†g� D T .p; 4p� 1/ # T .q; 4q� 1/;

and whose genus is g�D .p�1/.2p�1/C.q�1/.2q�1/. Denote †2p;2qD�[†g� ,
then it is easily checked that Œ†2p;2q �D 2p1C 2q2 2H2.CP2 # CP2;Z/ and the
genus of †2p;2q is .p� 1/.2p� 1/C .q� 1/.2q� 1/.

Assume now that .2p; 2q/D .6; 6/, or equivalently .p; q/D .3; 3/. By Theorem 3.1,
the genus of .6; 6/2H2.CP2 #CP2

IZ/ can be shown to be greater or equal to twenty.
Indeed, 1

2
†D 31C32 is characteristic (cf Lemma 3.1), bC

2
.X /D b2.X /.D 2/, and

.† �†/=4� �.X /D 16, where Œ†�D 61C 62 2H2.X IZ/ and X D CP2 # CP2 .
By virtue of Theorem 3.1, the inequality g � 5

4
..† �†/=4��.X //C2�b2.X / holds.
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This is equivalent to g � 20. Therefore, it is sufficient to find a genus twenty surface
representing .6; 6/ 2H2.CP2 # CP2

IZ/, which is †6;6 as constructed above.
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