$1^{1} / 2 \frac{1}{\frac{2}{3}}$

1 Introduction

Let X be a smooth, closed, oriented, simply connected $4-$ manifold, and let $b_{2}^{+}(X)$ (resp. $\left.b_{2}^{-}(X)\right)$ be the rank of the positive (resp. negative) part of the intersection form of X. The minimal genus problem is concerned with finding the genus function G_{X} defined on $H_{2}(X ; \mathbb{Z})$ as follows. For $\alpha \in H_{2}(X, \mathbb{Z})$, consider
$G_{X}(\alpha)=\min \{\operatorname{genus}(\Sigma) \mid \Sigma \subset X$ represents α, ie, $[\Sigma]=\alpha\}$,
where Σ ranges over closed, connected, oriented surfaces smoothly embedded in the 4-manifold X. Note that $G_{X}(-\alpha)=G_{X}(\alpha)$ and $G_{X}(\alpha) \geq 0$ for all $\alpha \in H_{2}(X, \mathbb{Z})$ (cf Gompf and Stipsicz [5]).

The minimal genus problem was solved for the 4 -manifolds $\mathbb{C P}^{2}, S^{2} \times S^{2}$ and $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$; see Kronheimer and Mrowka [8] and Ruberman [15]. For more results of this kind, we leave details to Lawson's expository paper [10]. The minimal genus problem in the case of $\mathbb{C P}^{2}$ is well known. In this paper, we treat $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ which has $b_{2}^{+}=2$ and admits no algebraic structure since a simple characteristic class argument shows that the tangent line bundle admit no complex structure (cf Gompf and Stipsicz [5]); in regards of Lawson's conjecture [10].

Conjecture 1.1 The minimal genus of $(m, n) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right)=H_{2}\left(\mathbb{C P}^{2}\right) \oplus$ $\mathrm{H}_{2}\left(\mathbb{C P}^{2}\right)$ is given by $\binom{m-1}{2}+\binom{n-1}{2}$, and it is the genus realized by the connected sum $39^{1 / 2}$ of the complex projective curves in each factor.

$$
G_{\mathbb{C P}^{2} \# \mathbb{C P}^{2}}((m, n)) \leq G_{\mathbb{C P}^{2}}(m)+G_{\mathbb{C P}^{2}}(n) .
$$

The minimal genus of $(m, n) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$ is bounded above by $\binom{m-1}{2}+\binom{n-1}{2}$, by the positive answer to Thom's conjecture; see Kronheimer and Mrowka [7]. This bound is sharp if $|m| \leq 2$ and $|n| \leq 2$ since each class can be represented by a sphere in $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$. The simplest case is the class $(3,2) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right)$, which is still unresolved. This class can be represented by an embedded torus, but it is unknown whether it can be represented by an embedded sphere [10]. Surprisingly enough, even if Conjecture 1.1 seems to be far from being true, there are some nontrivial positive examples. Therefore, it will be interesting to rather find the complex projective curves in $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ for which Lawson's conjecture holds.

In Section 2, we prove Theorem 1.1 which exhibits two infinite families of counterexamples.
$20^{1 / 2} \frac{20}{21}$ Theorem 1.1 Conjecture 1.1 fails for the following infinite families:
(1) $(2 p, d) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$ where d is a possible degree of $T(p, 4 p-1)$ in $\mathbb{C P}^{2}$, for any $p \geq 2$, and $T(p, 4 p-1)$ denotes the ($p, 4 p-1$)-torus knot; (2) $(m, 0) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$ for any $m \geq 3$.

In Section 3, we prove Proposition 1.1 that exhibits two nontrivial positive examples.
Proposition 1.1 The minimal genus of the pairs $(3,3)$ and $(6,6) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right)$ are respectively 2 and 20.

Throughout this paper, we work in the smooth category. All orientable manifolds will be assumed to be oriented unless otherwise stated. In particular, all knots are oriented. Recall that $\mathbb{C P}^{2}$ is the closed 4 -manifold obtained by the free action of $\mathbb{C}^{*}=\mathbb{C}-\{0\}$ on $\mathbb{C}^{3}-\{(0,0,0)\}$ defined by $\lambda(x, y, z)=(\lambda x, \lambda y, \lambda z)$ where $\lambda \in \mathbb{C}^{*}$ ie $\mathbb{C P}^{2}=\left(\mathbb{C}^{3}-\{(0,0,0)\}\right) / \mathbb{C}^{*}$. An element of $\mathbb{C P}^{2}$ is denoted by its homogeneous coordinates $[x: y: z]$, which are defined up to the multiplication by $\lambda \in \mathbb{C}^{*}$. The fundamental class of the submanifold $H=\left\{[x: y: z] \in \mathbb{C P}^{2} \mid x=0\right\}\left(H \cong \mathbb{C P}^{1}\right)$ generates the second homology group $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ (cf [5]). Since $H \cong \mathbb{C P}^{1}$, then the ${ }_{39} 1 / 2{ }^{39}$ standard generator of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ is denoted, from now on, by $\gamma=\left[\mathbb{C P}^{1}\right]$. Therefore,

The minimal genus problem in $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$
$1^{1 / 2} \xrightarrow{1}$ the standard generator of $H_{2}\left(\mathbb{C P}^{2}-B^{4} ; \mathbb{Z}\right)$ is $\mathbb{C} \mathbb{P}^{1}-B^{2} \subset \mathbb{C} \mathbb{P}^{2}-B^{4}$ with the complex orientations. A class $\xi \in H_{2}\left(\mathbb{C P}^{2}-B^{4}, \partial\left(\mathbb{C P}^{2}-B^{4}\right) ; \mathbb{Z}\right)$ is identified with its image by the homomorphism

$$
H_{2}\left(\mathbb{C P}^{2}-B^{4}, \partial\left(\mathbb{C P}^{2}-B^{4}\right) ; \mathbb{Z}\right) \cong H_{2}\left(\mathbb{C P}^{2}-\operatorname{int}\left(B^{4}\right) ; \mathbb{Z}\right) \longrightarrow H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)
$$

Let d be an integer, then the degree d smooth slice genus of a knot K in $\mathbb{C P}^{2}$ is defined as
$g_{\mathbb{C P}^{2}}(d, K)$
$=\min \left\{\operatorname{genus}(\Sigma) \mid \partial \Sigma=K\right.$ and $\left.[\Sigma, \partial \Sigma]=d \gamma \in H_{2}\left(\mathbb{C P}^{2}-B^{4}, \partial\left(\mathbb{C P}^{2}-B^{4}\right) ; \mathbb{Z}\right)\right\}$,
where Σ ranges over connected, oriented, smooth surfaces properly embedded in $\mathbb{C} \mathbb{P}^{2}-B^{4}$.

If such a surface exists, then we call d a possible degree of K in $\mathbb{C P}^{2}$. By the above identification, we also have $[\Sigma]=d \gamma \in H_{2}\left(\mathbb{C P}^{2}-B^{4} ; \mathbb{Z}\right)$. Then the $\mathbb{C P}^{2}$-genus of a-knot K is defined as

$$
g_{\mathbb{C P}^{2}}(K)=\min \left\{g_{\mathbb{C P}^{2}}(d, K) \mid \mathrm{d} \text { is a possible degree of } \mathrm{K}\right\}
$$

A similar definition could be made for any 4 -manifold and that this is a generalization of the 4 -ball genus; see the author [13].

Acknowledgements The author would like to thank heartily the referee for his insight and helpful comments and the Editor Professor Akio Kawauchi for his patience, throughout the accomplishment of this paper. He also wants to thank the Departments of Mathematics at the University of California, Riverside and the University of Texas at El Paso for their hospitality.

2 Proof of Theorem 1.1

Our counterexamples to Conjecture 1.1 are based on twisting operations of knots defined as follows.

Figure 1

Figure 2: $T(1, p) \cong U \xrightarrow{(-1,2 p)} T(-p, 4 p-1)$
Let K be a knot in the 3 -sphere S^{3}, and D^{2} a disk intersecting K in its interior. Let n be an integer. A $\left(-\frac{1}{n}\right)-$ Dehn surgery along ∂D^{2} changes K into a new knot K_{n} in S^{3}. Let $\omega=\operatorname{lk}\left(\partial D^{2}, K\right)$. We say that K_{n} is obtained from K by (n, ω)-twisting (or simply twisting). Then we write

$$
K \xrightarrow{(n, \omega)} K_{n}
$$

$20^{1} / 2 \frac{20}{21}$ We say that K_{n} is n-twisted if K is the trivial knot (see Figure 1). An example of interest is illustrated in Figure 2, where $T(p, q)(0<p<q$ and p and q are coprime) denotes the (p, q)-torus knot; see Burde and Zieschang [3].
The 4-ball genus (resp. 3-genus) of a knot k in S^{3}, denoted by $g^{*}(k)$ (resp. $g(k)$), is the minimum number of genera of all smooth compact connected and orientable surfaces bounded by $k \subset \partial B^{4}=S^{3}$ in B^{4} (resp. S^{3}). A knot is called positive, if it has a positive diagram, ie a diagram with all crossings positive. To deny Conjecture 1.1, we need the following four lemmas.

Lemma 2.1 Let K_{0} be a knot in S^{3} with 4-ball genus g^{*}.
(a) If K is a knot obtained by a $(-1, \omega)$-twisting from the knot K_{0}, then K bounds a properly embedded genus g^{*} surface in $\mathbb{C P}^{2}$ with possible degree ω.
(b) If $K_{0} \xrightarrow{(-1, m)} K_{m} \xrightarrow{(-1, n)} K$, then K bounds a properly embedded genus g^{*} in $\mathbb{C P}^{2} \# \mathbb{C P}^{2}-B^{4}$ representing $\left[\Sigma_{g^{*}}\right]=m \gamma_{1}+n \gamma_{2} \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}, S^{3}, \mathbb{Z}\right)$.

Proof (a) As shown in Figure 3, let D be a disk on which the $(-1, \omega)$-twisting is performed. Note that the $(+1)$-Dehn surgery on ∂D changes K_{0} to K. Regard K_{0}
and D as contained in the boundary of a 4-dimensional handle h^{0}. Then attach a

Figure 3
(b) As shown in Figure 4, let D_{1} and D_{2} be the disks on which the ($-1, m$)-twisting and $(-1, n)$-twisting are respectively performed. Note that the $(+1)-$ Dehn surgery on respectively ∂D_{1} and ∂D_{2} changes K_{0} to K. Regard K_{0}, D_{1} and D_{2} as contained in the boundary of a 4-dimensional handle h^{0}. Then attach the 2-handles h_{1}^{2} and h_{2}^{2} along $\partial D_{1} \cup \partial D_{2}$ with the same respective framing +1 . The 4 -manifold $h^{0} \cup h_{1}^{2} \cup h_{2}^{2}$ is $\mathbb{C P}^{2} \# \mathbb{C P}^{2}-B^{4}$. Let $\left(\Sigma_{g^{*}}, \partial \Sigma_{g^{*}}\right) \subset\left(B^{4}, \partial B^{4} \cong S^{3}\right)$ be the orientable and compact surface with $\partial \Sigma_{g^{*}}=K_{0}$. Since $\operatorname{lk}\left(\partial D_{1}, K_{0}\right)=m$ and $l k\left(\partial D_{2}, K_{0}\right)=n$, then $\left[\Sigma_{g^{*}}\right]=m \gamma_{1}+n \gamma_{2} \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}-B^{4}, S^{3} ; \mathbb{Z}\right)$.

Figure 4
This completes the proof.
Lemma 2.2 $T(-p, 4 p \pm 1)$ for $p \geq 2$ is smoothly slice in $\mathbb{C P}^{2}$ with a possible degree $d=2 p$.
$1^{1 / 2} \frac{1}{2}$
\qquad 4
5 L
\qquad
Proof Note that $T(p, q)$ is obtained from $T(2,3)$ by adding $(p-1)(q-1)-2$ half-twisted bands. Since $T(2,3)$ is (-1)-twisted (cf [13]), then $T(2,3)$ is smoothly slice in $\mathbb{C P}^{2}$. This implies that there is a genus $((p-1)(q-1) / 2)-1$ concordance between $T(2,3)$ and $T(p, q)$, which proves Lemma 2.3.

This let us hit to the following problem (cf [13]).
Problem 2.1 Show that $g_{\mathbb{C P}^{2}}(T(p, q))=\frac{(p-1)(q-1)}{2}-1$.
We gave positive examples to this problem for a finite family of $(\pm 2, q)$-torus knots [13].
To prove Lemma 2.4, recall that a knot in the 3 -sphere obtained from the torus knot $T(p, q)$ by performing s-times full twists on adjacent r-strands of the parallel $p-$ strings of $T(p, q)$ is called a twisted torus knot, denoted by $T(p, q, r, s)$ as depicted in Figure 5 (we refer the reader to Callahan, Dean and Weeks [4] for more details). We have
(1) $u\left(K_{i}\right)=u-i, 0 \leq i \leq u$ (in particular, K_{u} is the trivial knot),
(2) two succeeding knots of the sequence are related by one crossing change,
(3) $u=u(K)$ is the unknotting number of K.

Furthermore, the set of respective crossings positions $\left\{C_{1}, C_{2}, \ldots, C_{u-1}, C_{u}\right\}$ at which these crossing changes are performed in the following order:

$$
K_{0} \xrightarrow{C_{1}} K_{1} \xrightarrow{C_{2}} K_{2} \cdots \xrightarrow{C_{u}} K_{u},
$$

where $u=u(K)$, is called a minimal U-crossing data for the knot K. An example can be found in Vikas and Madeti [18] for the case of torus knots (see Figure 6 in the case of a (5,4)-torus knot).

Lemma 2.4 Let K be a knot such that $u(K)=g^{*}(K)$, then $g^{*}\left(K_{1}\right) \leq g^{*}(K)-1$.
Proof By the unknotting inequality we have $g^{*}\left(K_{1}\right) \leq u\left(K_{1}\right)$. Since $g^{*}(K)=u(K)$,
$391 / 22^{39}$ and by the above construction $u\left(K_{1}\right)=u(K)-1$, then $g^{*}\left(K_{1}\right) \leq g^{*}(K)-1$. \square

Figure 6: Minimal U-crossing data for $T(5,4)$
Remark 2.1 It is well-known that if K is a positive knot, then $u(K)=g^{*}(K)$ (See
Nakamura [12], Shibuya [16] and Przytycki [14] for proofs). Also, Baader classified $39^{1 / 2}$ 39 quasipositive knots for which this equality holds (cf [1]).

Algebraic $\mathcal{E G}^{\mathcal{G}}$ eometric \mathcal{T} opology, Volume 14 (2013)

Figure 7: Gluing of surfaces technique
$20^{1 / 2}{ }^{20}$ Proof of Theorem 1.1 By Lemma 2.2, $T(-p, 4 p-1)$ for $p \geq 2$ is smoothly slice in $\mathbb{C P}^{2}$ with degree $d=2 p$. Then, there is a smooth disk $(\Delta, \partial \Delta) \subset\left(\mathbb{C P}^{2}-B^{4}, S^{3}\right)$ such that $\partial \Delta=T(-p, 4 p-1)$ and $[\Delta]=2 p \gamma$ in $H_{2}\left(\mathbb{C P}^{2}-B^{4}, S^{3} ; \mathbb{Z}\right)$. In the other hand, there is a surface $\left(\Sigma_{g}, \partial \Sigma_{g}\right) \subset\left(\mathbb{C P}^{2}-B^{4}, S^{3}\right)$ such that $\partial \Sigma_{g}=T(-p, 4 p-1)$ and $\left[\Sigma_{g}\right]=d \gamma \in H_{2}\left(\mathbb{C P}^{2}-B^{4}, S^{3} ; \mathbb{Z}\right)$, where $g=g_{\mathbb{C P}^{2}}(T(p, 4 p-1))$. Let γ_{1} and γ_{2} be the standard generators of $H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$. Then, the genus g closed surface $\Sigma=\Delta \cup \Sigma_{g}$ in $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$ satisfies $\left.\Sigma\right]=2 p \gamma_{1}+d \gamma_{2}$ in $H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$ (see Figure 7). If Conjecture 1.1 were true, then the genus of Σ which is equal to $g_{\mathbb{C P}^{2}}(T(p, 4 p-1))$ would satisfy

$$
\frac{(2 p-1)(2 p-2)}{2}+\frac{(|d|-1)(|d|-2)}{2} \leq g_{\mathbb{C P}^{2}}(T(p, 4 p-1)) .
$$

By Lemma 2.3, we have

$$
\frac{(2 p-1)(2 p-2)}{2}+\frac{(|d|-1)(|d|-2)}{2} \leq \frac{(p-1)(4 p-2)}{2}-1 .
$$

Or equivalently,

$$
(2 p-1)(p-1)+\frac{(|d|-1)(|d|-2)}{2} \leq(p-1)(2 p-1)-1,
$$

$39^{1 / 2} 3$
${ }_{1} 1 / 2 \frac{1}{\frac{1}{3} \text { have to prove that Conjecture } 1.1 \text { fails for }(m, 0) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right) \text { for any } m \geq 3 \text {, we }}$ Case 1: $\boldsymbol{m}=\mathbf{2} \boldsymbol{n}+\mathbf{1}$ for $\boldsymbol{n} \geq \mathbf{1}$ The proof of this case is based on Figure 8 showing that
$T(2,2 n-1) \xrightarrow{(-1,2 n+1)} T(-(2 n-1), 2 n+1,2,-1) \xrightarrow{(-1,0)} T(-(2 n-1), 2 n+1)$.
By the positive answer to Milnor's conjecture (cf Kronheimer and Mrowka [7]), the 4-ball genus of $T(2,2 n-1)$ and $T(2 n-1,2 n+1)$ are respectively $n-1$ and $2 n(n-1)$. As depicted in Figure 9, Lemma 2.1 yields the existence of a compact surface $\left(\Sigma_{n-1}, \partial \Sigma_{n-1}\right) \subset\left(B^{4}, \partial B^{4} \cong S^{3}\right)$ with $\partial \Sigma_{n-1}=T(-(2 n-1), 2 n+1)$. As depicted in Figure 9, Lemma 2.1, we have

$$
\left[\Sigma_{n-1}\right]=(2 n+1) \gamma_{1} \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}-B^{4}, S^{3} ; \mathbb{Z}\right) .
$$

Let now $\left(\Sigma_{2 n(n-1)}, \partial \Sigma_{2 n(n-1)}\right) \subset\left(B^{4}, \partial B^{4} \cong S^{3}\right)$ be a compact surface with

$$
\partial \Sigma_{2 n(n-1)}=T(2 n-1,2 n+1) .
$$

Gluing Σ_{n-1} and $\Sigma_{2 n(n-1)}$ along their boundaries yield a closed surface

$20^{1 / 2} \frac{20}{21}$

$$
\Sigma=\Sigma_{n-1} \cup \Sigma_{2 n(n-1)} \subset \mathbb{C P}^{2} \# \mathbb{C P}^{2}
$$

representing $(2 n+1) \gamma_{1} \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right)$. If Conjecture 1.1 were true, then the genus of Σ which is equal to $n-1+2 n(n-1)$ would satisfy

$$
\frac{(2 n+1-1)(2 n+1-2)}{2} \leq n-1+2 n(n-1),
$$

or equivalently, $2 n^{2}-n \leq 2 n^{2}-n-1$, an obvious contradiction.
Case 2: $\boldsymbol{m}=\mathbf{2} \boldsymbol{p}$ for $\boldsymbol{p} \geq \mathbf{2}$ Figure 2 shows that $T(-p, 4 p-1)$ is obtained from the trivial knot $T(-1, p)$ by a single $(-1,2 p)$-twisting. Let $\left\{C_{1}, C_{2}, \ldots, C_{u-1}, C_{u}\right\}$ be a U-crossing data for $T(-p, 4 p-1)$. Changing the crossing C_{1} from negative to positive is equivalent to performing a $(-1,0)$-twisting along the crossing C_{1} (see Figure 10) and this yields that

$$
T(-1, p) \xrightarrow{(-1, p)} T(-p, 4 p-1) \xrightarrow{(-1,0)} T(-p, 4 p-1,2,+1),
$$

where $T(-p, 4 p-1,2,+1)$ is a twisted torus knot, as shown in Figure 10. By Lemma 2.4, we have that the 4 -ball genus of $T(-p, 4 p-1,2,+1)$ satisfies the $39^{1 / 2} 2^{39}$ inequality $g^{*} \leq((p-1)(4 p-2)) / 2-1$. Therefore, by a similar argument as in Case 1
$1^{1} / 2 \frac{1}{}$ above, if Conjecture 1.1 were true for $(2 p, 0) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$ for any $p \geq 2$, then we would have $((2 p-1)(2 p-2)) / 2 \leq g^{*}$, which yields that

$$
\frac{(2 p-1)(2 p-2)}{2} \leq \frac{(p-1)(4 p-2)}{2}-1
$$

or equivalently, $(2 p-1)(p-1) \leq(p-1)(2 p-1)-1$, an obvious contradiction.
Corollary 2.1 The class $(3,0) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right)$ can be represented by a sphere, and therefore, it is the smallest counterexample to Conjecture 1.1.

Proof It follows immediately from Case 1 if $n=1$.

Figure 9: Gluing of surfaces technique

Figure 10

3 Proof of Proposition 1.1

To prove Proposition 1.1, we need Lemma 3.1, Theorem 3.1 and Lemma 3.2 as well as Lemma 3.3. For this purpose, we recall some basic definitions. In what follows, let X be a smooth, closed, oriented, simply connected 4 -manifold, then the second homology group $H_{2}(X, \mathbb{Z})$ is finitely generated (we leave details to Spanier's book [17]). The ordinary form $q_{X}: H_{2}(X, \mathbb{Z}) \times H_{2}(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$ given by the intersection pairing for 2-cycles such that $q_{X}(\alpha, \beta)=\alpha \cdot \beta$, is a symmetric, unimodular bilinear form. The signature of this form, denoted $\sigma(X)$, is the difference between the number of positive ${ }_{39} 1 / 2{ }^{39}$ and negative eigenvalues of a matrix representing q_{X}. Let $b_{2}^{+}(X)$ (resp. $\left.b_{2}^{-}(X)\right)$ be
$1^{1} / 2 \frac{1}{2}$
the rank of the positive (resp. negative) part of the intersection form of X. The second Betti number $b_{2}=b_{2}^{+}+b_{2}^{-}$and the signature is $\sigma(X)=b_{2}^{+}-b_{2}^{-}$.

A second homology class $\xi \in H_{2}(X, \mathbb{Z})$ is said to be characteristic provided that ξ is dual to the second Stiefel-Whitney class $w_{2}(X)$, or equivalently

$$
\begin{equation*}
\xi \cdot x \equiv x \cdot x(\bmod 2) \tag{1}
\end{equation*}
$$

for any $x \in H_{2}(X ; \mathbb{Z})$ (we leave details to Milnor and Stasheff's book [11]).

Lemma $3.1(a, b) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$ is characteristic if and only if a and b are both odd.

Proof If $(a, b) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P} \mathbb{P}^{2} ; \mathbb{Z}\right)$ is characteristic, then $(a, b) \cdot(1,0) \equiv 1(\bmod 2)$ and $(a, b) \cdot(0,1) \equiv 1(\bmod 2)$. This yields that both a and b are odd. Conversely, let $\xi=(a, b) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$ and assume that a and b are both odd. Then for any $x=\left(x_{1}, x_{2}\right) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C} \mathbb{P}^{2} ; \mathbb{Z}\right)$, the identity (1) is equivalent to $a x_{1}+b x_{2} \equiv$ $x_{1}^{2}+x_{2}^{2}(\bmod 2)$. Since $x_{i} \equiv x_{i}^{2}(\bmod 2)$ for $i=1,2$ and $a \equiv 1$ and $b \equiv 1(\bmod 2)$, then (1) holds. This proves Lemma 3.1.

Theorem 3.1 (Bryan [2]) Let X be a smooth closed oriented and simply connected 4 -manifold. We suppose Σ is an embedded surface in X of genus g and [Σ] is divisible by 2 . We assume that $\frac{1}{2} \Sigma$ is characteristic, $b_{2}^{+}>1$, and $\frac{\Sigma \cdot \Sigma}{4}-\sigma(X) \geq 0$. Then

$$
g \geq \frac{5}{4}\left(\frac{\Sigma \cdot \Sigma}{4}-\sigma(X)\right)+2-b_{2}(X)
$$

A proof of the following lemma can be found in [10, page 401].

Lemma 3.2 (Kronheimer and Mrowka [9]) Let X be a smooth closed, connected and oriented 4 -manifold. Let $a(\Sigma)=2 g(\Sigma)-2-\Sigma \cdot \Sigma$. If $\xi \in H_{2}(X ; \mathbb{Z})$ is a homology class with $\xi \cdot \xi \geq 0$ and Σ_{ξ} is a surface representing ξ and $g \geq 1$ when $\Sigma_{\xi} \cdot \Sigma_{\xi}=0$, then for any $r>0$, the class $r \xi$ can be represented by an embedded surface $\Sigma_{r \xi}$ with

$$
a\left(\Sigma_{r \xi}\right)=r a\left(\Sigma_{\xi}\right)
$$

Remark 3.1 Note that in particular, if $X=\mathbb{C P}^{2} \# \mathbb{C P}^{2}$, then $a\left(\Sigma_{2 \xi}\right)=2 a\left(\Sigma_{\xi}\right)$ is equivalent to
$39^{1 / 2}-\quad g\left(\Sigma_{2 \xi}\right)=2 g\left(\Sigma_{\xi}\right)+\Sigma_{\xi} \cdot \Sigma_{\xi}-1$.

Algebraic $\mathcal{E}^{\mathcal{G}}$ Geometric \mathcal{T} opology, Volume 14 (2013)

PROOFS - PAGE NUMBERS ARE TEMPORARY
The minimal genus problem in $\mathbb{C P}^{2} \# \mathbb{C P}^{2}$

$11 / 2 \frac{1}{\frac{2}{3}}$ and therefore,

Figure 11: $T(1,2) \xrightarrow{(-1,3)} T(-2,3)$

By Lemma 2.1, there is a disk $\Delta \subset \mathbb{C P}^{2} \# \mathbb{C P}^{2}-B^{4}$ so that $\partial \Delta=T(-2,3) \# T(-2,3)$ $20^{1 / 2} \frac{20}{21}$ and $[\Delta]=3 \gamma_{1}+3 \gamma_{2} \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}-B^{4}, S^{3}, \mathbb{Z}\right)$. Since the 4 -ball genus of $T(2,3)$ is one and $T(2,3)$ is a positive knot (see Kawauchi [6]), then Lemma 3.3 yields that the 4 -ball genus of $\bar{k}=T(2,3) \# T(2,3)$ is two. Let $\left(\Sigma_{2}, \partial \Sigma_{2}\right) \subset\left(B^{4}, \partial B^{4} \cong S^{3}\right)$ be an orientable and compact surface with $\partial \Sigma_{2}=T(2,3) \# T(2,3)$. Gluing Δ and Σ_{2} along their boundaries yield a closed genus 2 surface $\Sigma=\Delta \cup \Sigma_{2} \subset \mathbb{C P}^{2} \# \mathbb{C P}^{2}$ representing $3 \gamma_{1}+3 \gamma_{2} \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2}\right.$) (see Figure 12).

Figure 12: Gluing of surfaces technique

$1^{1} / 2 \frac{1}{2}$
This is equivalent to $g \geq 20$. Therefore, it is sufficient to find a genus twenty surface representing $(6,6) \in H_{2}\left(\mathbb{C P}^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)$, which is $\Sigma_{6,6}$ as constructed above.
\qquad

References

[1] S Baader, Unknotting sequences for torus knots, Math. Proc. Cambridge Philos. Soc. 148 (2010) 111-116 MR2575377
[2] J Bryan, Seiberg-Witten theory and $\mathbb{Z} / 2^{p}$ actions on spin 4-manifolds, Math. Res. Lett. 5 (1998) 165-183 MR1617929
[3] G Burde, H Zieschang, Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter \& Co., Berlin (1985) MR808776
[4] P J Callahan, J C Dean, J R Weeks, The simplest hyperbolic knots, J. Knot Theory Ramifications 8 (1999) 279-297 MR1691433
[5] R E Gompf, A I Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999) MR1707327
[6] A Kawauchi, A survey of knot theory, Birkhäuser, Basel (1996) MR1417494 Translated and revised from the 1990 Japanese original by the author
[7] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces, I, Topology 32 (1993) 773-826 MR1241873
[8] PB Kronheimer, TS Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797-808 MR1306022
[9] P B Kronheimer, T S Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Differential Geom. 41 (1995) 573-734 MR1338483
[10] T Lawson, The minimal genus problem, Exposition. Math. 15 (1997) 385-431 MR1486407
[11] J W Milnor, J D Stasheff, Characteristic classes, Princeton Univ. Press (1974) MR0440554 Annals of Mathematics Studies, No. 76
[12] T Nakamura, Four-genus and unknotting number of positive knots and links, Osaka J. Math. 37 (2000) 441-451 MR1772843
[13] MA Nouh, Genera and degrees of torus knots in $\mathbb{C} P^{2}$, J. Knot Theory Ramifications 18 (2009) 1299-1312 MR2569563
[14] J Przytycki, Positive links (1988)
[15] D Ruberman, The minimal genus of an embedded surface of non-negative square in a rational surface, Turkish J. Math. 20 (1996) 129-133 MR1392668
[16] T Shibuya, Some relations among various numerical invariants for links, Osaka J. $39^{1 / 2} \xrightarrow{39} \quad$ Math. 11 (1974) 313-322 MR0353295
$\begin{aligned} 1 / 2 & \begin{array}{l}1 \\ \frac{2}{3}\end{array} \quad \text { [17] }\end{aligned} \begin{aligned} & \text { E H Spanier, Algebraic topology, Springer, New York (1981) MR665554 Corrected } \\ & \text { reprint }\end{aligned} \quad$ M Vikas, P Madeti, A Method for Unknotting Torus Knots (2012) Knot Theory and its 4 5
Department of Mathematical Sciences, University of Texas at El Paso
500 West University Avenue, Bell Hall 144, El Paso, Texas 79968, USA
Email: manouh@utep.edu
Received: 24 September 2008 Revised: 8 August 2013
\qquad
\qquad -
Ramifications, a mini symposium in the 6ECM conference

