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ABSTRACT

The CP2-genus of a knot K is the minimal genus over all isotopy classes of smooth,
compact, connected and oriented surfaces properly embedded in CP2—B* with boundary
K. We compute the CP2-genus and realizable degrees of (=2, g)-torus knots for 3 < g <
11 and (2, g)-torus knots for 3 < ¢ < 17. The proofs use gauge theory and twisting
operations on knots.
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1. Introduction

Throughout this paper, we work in the smooth category. All orientable manifolds
will be assumed to be oriented unless otherwise stated. A knot is a smooth embed-
ding of S! into the 3-sphere S3 = R3 U {£o00}. All knots are oriented. Let K be
a knot in 9(CP? — B*) 2 3, where B* is an embedded open 4-ball in CP2. The
CP2-genus of a knot K, denoted by gcp2(K), is the minimal genus over all isotopy
classes of smooth, compact, connected and oriented surfaces properly embedded in
CP?— B* with boundary K. If K bounds a properly embedded 2-disk in CP? —
then K is called a slice knot in CP2. A similar definition could be made for any
4-manifold and that this is a generalization of the 4-ball genus.

Recall that CP? is the closed 4-manifold obtained by the free action of C* =
C — {0} on C* — {(0,0,0)} defined by A(z,y,2) = (Az, Ay, A\z) where A € C*, i.e.
CP? = (C* — {(0,0,0)}/C*. An element of CP? is denoted by its homogeneous
coordinates [z : y : z|, which are defined up to the multiplication by A € C*.
The fundamental class of the submanifold H = {[z : y : 2] € CP?|lz = 0}(H =
CP?') generates the second homology group Hs(CP?;Z) (see Gompf and Stipsicz
[12]). Since H = CP?, then the standard generator of Ho(CP?;Z) is denoted, from
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now on, by v = [CP!]. Therefore, the standard generator of Hy(CP? — B%;Z) is
CP' — B? ¢ CP? — B* with the complex orientations.

A class ¢ € Hy(CP? — B*,0(CP? — B*);Z) is identified with its image by the
homomorphism

Hy(CP? — B* 9(CP? — BY);Z) = Hy(CP? — B*Z) — Hy(CP* 7).

Let d be an integer, then the degree-d smooth slice genus of a knot K in CP?
is the least integer g such that K is the boundary of a smooth, compact, connected
and orientable genus g surface X, properly embedded in CP? — B* with boundary
K in (CP? — B*) and degree d, i.c.

[%y,0%,] = dy € Hy(CP? — B*,0(CP? — B*); 7).
By the above identification, we also have: [2,] = dy € Ho(CP? — B*; 7). If such

a surface can be given explicitely, then we say that the degree d is realizable. The

CP2-genus of a knot K, denoted by gcp2(K), is the minimum over these over all
d.

Question 1.1. Given a realizable degree, is the underlying surface >, unique, up
to isotopy?

An interesting question is to find the CP2-genus and the realizable degree(s) of
knots in CP2. In this paper, we compute the CP2-genus and realizable degrees of
a finite collection of torus knots.

Theorem 1.1.

(1) gcp2(T(—2,3)) = 0 with realizable degree d € {£2,+3}.

(2) gcp2(T(—2,q)) =0 for ¢ = 5,7 and 9 with respective realizable degrees +3,+4
and +4.

(3) gcp2(T(—2,11)) = 1 with possible degree(s) d € {+4,+5}.

Note that for any 0 < p < ¢, T(p,q) is obtained from 7(2,3) by adding
(p —1)(¢ — 1) — 2 half-twisted bands. Then, there is a genus (p_l)(+l)_2 cobor-
dism between T'(2,3) and T'(p, ). We conjecture that the C P?-genus of a (p, ¢)-torus
knot is equal to the genus of the cobordism between T'(2,3) and T'(p, q).

Conjecture 1.1. gcp2(T(p,q)) = % -1

We answer this conjecture by the positive for all (2,¢)-torus knots with
3<q<17.

Theorem 1.2.

(1) gcp2(T'(2,3)) = 0 with realizable degree d = 0.

(2) gcp2(T(2,9)) = % for 5 < q < 17 with respective possible degree(s )
e de{0,£1} if g€ {5,7,9,11}, and
o de{0,£1,£3} if g € {13,15,17}.
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2. Twisting Operations and Sliceness in 4-Manifolds

Let K be a knot in the 3-sphere S®, and D? a disk intersecting K in its interior. Let
n be an integer. A —%—Dehn surgery along C' = 0D? changes K into a new knot K,
in S3. Let w = 1k(0D?, L). We say that K, is obtained from K by (n,w)-twisting
(or simply twisting). Then, we write K () K,, or K () K(n,w). We say that
K,, is n-twisted provided that K is the unknot (see Fig. 1).

An easy example is depicted in Fig. 2, where we show that the right-handed
trefoil T'(2,3) is obtained from the unknot 7°(2,1) by a (41, 2)-twisting. (In this
case n = +1 and w = +2.)

There is a connection between twisting of knots in S% and dimension four: Any
knot K_; obtained from the unknot K (or more generally, a smooth slice knot in the
4-ball) by a (—1,w)-twisting is smoothly slice in CP? with degree w realizable by the
twisting disk A, i.e. there exists a properly embedded smooth disk A ¢ CP? — B*
such that A = K_; and [A] = wy € Hy(CP? — B* 83 Z). For convenience of the
reader, we give a sketch of a proof due to Miyazaki and Yasuhara [21]: We assume
KuUC c oh® = 8% where h° denotes the 4-dimensional 0-handle (h° = B*). The
unknot K bounds a properly embedded smooth disk A in h°. Then, performing a
(—1)-twisting is equivalent to adding a 2-handle h?, to h® along C with framing
+1. Tt is known that the resulting 4-manifold h° U h? is CP? — B* (see Kirby [18]
for example). In addition, it is easy to verify that [A] = wy € Ho(CP? — B4, 53, 7).
More generally, we can prove, using Kirby calculus [18] and some twisting manip-
ulations, that an (n,w)-twisted knot in S bounds a properly embedded smooth
disk A in a punctured standard four manifold of the form nCP2 — B* if n > 0 (see
Fig. 3), or | n | CP? — B* if n < 0. The second homology of [A] can be computed
from n and w.

o= lk(KC) (n=0) —1/n — Dehn surgery along C
K (n, ®)-twisting
T n—full twists K,
/
C
Fig. 1.

121 ) (+1, 2)-twisting 123
& > along C / \
‘ C

Fig. 2.
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Fig. 3.
Examples.

(1) Song and Goda and Hayashi proved in [11] that T'(p,p + 2) (for any p > 5)
is obtained by a single (+1)-twisting along an unknot. This implies that their
corresponding left-handed torus knots are smoothly slice in CP? (see [2]). In
[5], we proved that the realizable degree of T'(—p,p + 2) in CP? is p + 1 (for
any p > 5).

(2) Any unknotting number one knot is (—1)-twisted (see Fig. 4), and then it is
smoothly slice in CP2. In particular, the double of any knot is smoothly slice
in CP2.

Question 2.1. Is there a knot which is topologically but not smoothly slice

in CP2%?

The proof of Theorem 2.1 can be found in [4]:

Theorem 2.1. If a knot K is obtained by a single (n,w)-twisting from an unknot
Ko along C, then its inverse —K is obtained by a single (n, —w)-twisting from the
unknot — Ky along C.

Note that T'(—p,4p £ 1) (p > 2) is obtained from the unknot T'(—1,4p £ 1)
by a (—1,2p)-twisting (see Fig. 5). Therefore, Theorem 2.2 is deduced from Kirby
calculus.

Theorem 2.2. T(—p,4p=£1) (p > 2) is smoothly slice in CP? with realizable degree
d=2p.

9\/\ A/

Fig. 4.
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T <

T(-p, 4p+1)

T(-1,p)

Fig. 5.

We refer the reader to my Ph.D thesis [2] for more details on twisting operations
on knots in S3.

3. Preliminaries

Litherland gave an algorithm to compute the z-signatures of torus knots.

Theorem 3.1 (Litherland [20]). Let £ = €2 x € Q (with 0 <z < 1), then
oe(T(p,q)) = o+ — 0¢-

a§+:#{(i,j)|1§iép—1 and 1<j<g-1
iJ
such that  —1 < —+ =<z (mod 2)
p g
agz#{(i,j)IléiSP—l and 1<j<g—1

such that 1 < — +2 <z +1 (mod 2)}
p q

(i and j are integers)
Ify, ;= zi) + %, then z — 1 < y; ; < (mod 2) is equivalent to
O0<yi;j <z or z+1<y;; <2

The signature of a knot is o(k) = o_1(k) obtained by assigning = = 1 and the

-1 which we denote

Tristram d-signature (d > 3 and prime) corresponds to x = %

by c4(k) = O i (Tristram [24]).

In the following, b3 (X) (respectively, b, (X)) is the rank of the positive (respec-
tively, negative) part of the intersection form of the oriented, smooth and compact
4-manifold X. Let o(X) denote the signature of M*. Then a class ¢ € Hy(X,Z)
is said to be characteristic provided that {.x = z.x for any © € Ho(X,Z) where
&.x stands for the pairing of ¢ and z, i.e. their Kronecker index and &2 for the
self-intersection of ¢ in Hay(M*,7Z).
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Theorem 3.2 (Gilmer and Viro [10, 25]). Let X be an oriented, compact
4-manifold with 0X = S®, and K a knot in 0X. Suppose K bounds a surface of
genus g in X representing an element £ in Ha(X,0X).

(1) If & is divisible by an odd prime d, then:

? -1
242

& —o(X)— ad(K)’ < dimHy (X Zg) + 2g.

(2) If € is divisible by 2, then:

% —o(X) - g(K)’ < dimHy(X;Zs) + 2g.

The following theorem gives a lower bound for the the genus of a characteritic
class embedded in a 4-manifold:

Theorem 3.3 (Acosta [1], Fintushel [8], Yasuhara [27]). Let X be a smooth
closed oriented simply connected 4-manifold with m = min(bg (X), by (X)) and M =
max (b (X), b, (X)), and assume that m > 2. If ¥ is an embedded surface in X of
genus g so that [X] is characteristic, then

M”_M’ RN <o(X)<0 or0<o(X) <D,
MH_W fo(X)<0<DY or 2.0 <0< o(X).

Using the knot filtration on the Heegaard Floer complex CF, Ozsvath and
Szabo introduced in [23] an integer invariant 7(K) for knots. They showed that
| 7(T(p,q)) |= % (see [23, Corollary 1.7]). In addition, they give a lower
bound for the genus of a surface ¥ bounding a knot in a 4-manifold. To state
their result, let X be a smooth, oriented four-manifold with 9X = S% and with
bT(X) =b1(X) = 0. According to Donaldson’s celebrated theorem [3], the inter-
section form of W is diagonalizable. Writing a homology class [X] € Ha(X) as
[X] = s1.e1 + -+ - + Sp.ep, where e; are an ortho-normal basis for Hy(X;Z), and
s; € 7, we can define the L' norm of [X] by | [X] |=| s1 | +---+ | sp |. Note that this
is independent of the diagonalization (since the basis e; is uniquely characterized,
up to permutations and multiplications by 1, by the ortho-normality condition).
We then have the following bounds on the genus of [X]:

Theorem 3.4 (Ozsvath and Szabo [23]). Let X be a smooth, oriented four-
manifold with by (X) = b1(X) =0, and 0X = S3. If ¥ is any smoothly embedded
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surface-with-boundary in X whose boundary lies on S3, where it is embedded as the
knot K, then we have the following inequality:

Y| +[X].[E
4. Proof of Statements

To prove Theorems 1.1 and 1.2, we need the following lemma.

Lemma 4.1. Let d be an odd prime number. Then the d-signature of a (2, q)-torus
knot (q > 3) is given by the formula:

0a((T(2,q9)) = —(¢—1)+2 {2d}

where [z] denotes the greatest integer less or equal to x.

Proof. We use Litherland’s algorithm to compute o4((7(2,¢)). In this case,
Yij = % +Llandz = <=1 Therefore,

01+d1< +l<21sequwalenttol+[w]Squ—l.
o ol + <1+ dlsequlvalenttol<]<[%].

Litherland’s algorithm yields that oq((T(2,q)) = (¢ — 1) — 2[ 2419] Tt is casy

to check that this is equivalent to o4((T(2,q)) = —(¢— 1) + 2[5]. |

4.1. Proof of Theorem 1.1

Proof.

(1) It is easy to check that T(—2, 3) is obtained by a single (—1, 2)-twisting and also
by a single (—1, 3)-twisting from the unknot, and therefore T'(—2, 3) is smoothly
slice in CP?, or equivalentely, gcp2(T(—2,3)) = 0 . Theorems 3.2 and 2.1 yield
that the only possible degrees are d € {+2,+3}; realizable by the twisting
disks.

(2) Note that T'(—2,5) can be obtained from the unknot by a single (—1, 3)-twisting
(see Fig. 6), which proves that T'(—2,5) is smoothly slice in CP? with degree
d = +3 (see [21]). Theorems 3.2 and 2.1 yield that the only possible degrees
are d = £3; realizable by the twisting disks.

(3) Theorem 2.2 yields that T'(—2,7) and T'(—2,9) are slice with degree d = 4.
We can deduce from Theorems 3.2 and 2.1 that the only realizable degrees are
d=+4.

(4) To show that gcp2(T(—2,11)) = 1 and d € {+4,+5}, we first notice that
T(—2,11) is obtained from T(—2,9) by adding two half-twisted bands. By
Theorem 2.2, T'(—2,9) is smoothly slice in CP?. Thus gcpz(T(-2,11)) < 1.
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Fig. 6.

To show that gcp2(T(—2,11)) = 1, let £, be a minimal genus smooth, com-
pact, connected and oriented surface in CP? — B* with boundary T'(—2,11),
and assume that [3,] = dy € Ho(CP? — B4, 53,Z).

Case 1. If d is even, then by Theorem 3.2.(2), | d2—2 — o(T(-2,11)) —
1 < 1+ 2g9. By A.G. Tristram [24], o(T(—2,11)) = 10, then d satisfies
20 — 4g < d* < 24 + 4g. Therefore, g = 1 and d = £4 are the only possibilities.

Case 2. Assume now that d is odd. We can check that T'(2,11) is obtained from
the unknot T'(—2,1) by a single (6, 2)-twisting. It was proved in [21] and [7],
using Kirby’s calculus on the Hopf link [18], that this yields the existence of a
properly embedded disk D C 5% x S? — B* such that [D] = —2a+63 and 0D =
T'(2,11). The genus g surface ¥ = 3, U D satisfies [¥, UD] = dy —2a + 60 €
Hy(CP?#S8? x S2,7). Note that ¥ is a characteristic class and [X]? = d* — 24.
Assume first that | d |> 7, so blowing up ¥ C §2% x S2#CP? a number of times
equal to d? — 24 gives a genus g surface ¥ C CP2#S? x S24(d? — 24)@ =
X (the proper transform) with [%]? = 0. If ¢; denotes the homology class of
the exceptional sphere in the i'" blow-up (i = 1,2,...,d% — 24), then [¥] =
dy — 2+ 66 — Z:jz_ﬂ e; € Ho(X,Z). The last inequality of Theorem 3.3

yields that g > |”(8—X)‘, which is equivalent to g > d2g25; which contradicts the
assumptions ¢ < 1 and | d |> 7. Therefore, if d is odd then d € {£1,4+3,£5}

and g = 1.

(a) To exclude d € {£1,+3}, let ¥; be a genus-one smooth, compact, con-
nected and oriented surface in CP? — B* with boundary 7'(—2,11), such
that [$1] = dy € Ho(CP? — B* S Z). Thus, the surface with the other
orientation (¥;,0%;) C (CP2 — B*,5%) is a genus-one surface bounding
T(2,11) such that [X;] = +d¥ in Ho(CP2— B*, 5%, 7). By Theorem 3.4, we
have 7(T(2,11)) + EIEELE < 0(5)) Since 7(T(2,11)) = 5, [T4] |=| d |
and [X]2 = —d?, then 5 + M <1, a contradiction.

(a) If d = £5, then by Lemma 4.1, we have o5(7(—2,11)) = 8 and then
Theorem 3.2.(2) yields that g = 1 and d = £5 are two possibilities. O
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4.2. Proof of Theorem 1.2
To prove Theorem 1.2, we recall the definition of band surgery:

Band surgery. Let L be a pu-component oriented link. Let By, ..., B, be mutu-
ally disjoint oriented bands in S® such that B; N L = dB; N L = a; U o, where
a1, 0, ..., ap,al, are disjoint connected arcs. The closure of LUIBy U---U0B, is
also a link L'.

Definition 4.2. If L’ has the orientation compatible with the orientation of L —
Uizi i Ua;and Uy (0B — a; U«aj), then L' is called the link obtained

by the band surgery along the bands By, ..., B,. If p — v = 1, then this operation
is called a fusion.

Example 4.3. Let L, , = K] U---UK}UK{U---UK? denote the ((p,0), (¢,0))-
cable on the Hopf link with linking number 1 (see Fig. 7). Then, T(2,9) can be
obtained from Lg 4 by fusion (see Fig. 8).

Example 4.4. Any (p, 2kp+1)-torus knot (k > 0) is obtained from L, 1), by adding
(p — 1)(k + 1) bands (see Yamamoto’s construction in [26]). This construction can
be generalized to any (p, q)-torus.

For convenience of the reader, we give a smooth surface that bounds L, , in
T* — J ( J is a 4-ball); due to Kawamura (see [14, 15]): Consider 7% = T2 x T?

K? K- K]
£ q
——— [ =~ "
N \
—— —{ — —
> \ 7\
1
Kﬂ
1
KZ
1
KI

Fig. 7. The link Ly 4.

bl b3
\\ \\ \| ‘I b5
. /by
bZ

Fig. 8.
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where T2 = [0,1] x [0,1]/~ such that (0,¢) ~ (1,t) and (s,0) ~ (s,1), and define
FE and J by:

k k ko k
E= - — T2 T? v
U (p+1’p+1) S _U ) (q+1’q+1)

k=1,....,p k=1,..., q
and J = [ﬁ, %]Q X [q%, Z%]Q. The 4-ball J contains all self-intersections of E

and we have:

Theorem 4.5 (Kawamura [14, 15]). 0(E —J) = EN9JJ C 9J is the link L, 4.
Auckly proved the following in [6].

Theorem 4.6. 0 is a basic class of T*.
To prove Theorem 1.2, we need Proposition 4.7 and Lemma 4.8.

Proposition 4.7. If K, , is a knot obtained from Ly, 4 by fusion and X, a smooth,
compact, connected and oriented surface properly embedded in CP? — B* with
boundary K, , in 9(CP? — B*). Assume [2,] = dy € Hy(CP? — B* S%), then

2pg — d?+ | d|<2(p+q+g) — 2.

Proof. By Theorem 4.5, there exists a surface £ and a 4-ball J, such that:
O(FE —J) = Lpq (see Fig. 9). Since K, , is obtained from L, , by fusion, then
there exists a (p + ¢ + 1)-punctured sphere Fin S3 x [0,1] € J such that we can
identify this band surgery with F'N (S® x {1/2}), and 0F = L, ,U K, , with L, ,
lies in S% x {0} = 9J x {0} and K, , lies in S3 x {1} =2 9J x {1}. The 3-sphere
S3 x {1}(= 8J x {1}) bounds a 4-ball B* C J. The surface F = (E —J)U F is a

Fig. 9. The surface & = (E — J)U FUX,.
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smooth surface properly embedded in 7* — B*, and with boundary K, 4. Since K, 4
bounds a genus g surface ¥, C CP? — B4, then K, , bounds a properly embedded
genus g surface 33, C CP2 — B* such that [¥,] = +d7y € Hy(CP2 — B*,S%;Z). The
smooth surface ¥ = FUY, in T*#CP? satisfies [¥]? = F2 + (¥,)2. Since F and
E are homologous, then F? = E? = 2pq which implies that [X]? = 2pg — d*. By
Theorem 4.6, 0 is a basic class for T4, then the basic class of T4#CP? (the blowup
of T*) is K = +7 (see [9]), and therefore | K.X |=| d |. Since g(E— B*) = p+gq, then
g9(2) = p+q+g. The adjunction inequality proved by Kronheimer and Mrowka [22]
implies that [Z]?+ | K.2 |< 2¢(X) — 2. Therefore, 2pq — d?+ | d |< 2(p+q+g) — 2.

O

Lemma 4.8. Let (%,,0%,) C (CP?— B* S%) be a genus-minimizing smooth,
compact, connected and oriented surface properly embedded in CP?> — B* with
bondary T'(2,q) and let

[%,] = dy € Hy(CP? — B%: 7).

(1) If d is even, then g = % and d = 0. Therefore Conjecture 1.1 holds in case d
s even.
(2) Congecture 1.1 holds in case d = £1.

Proof.

(1) For any ¢ > 0, we can check that T'(2,q) is obtained from T'(2,3) by adding
g — 3 half-twisted bands, then there is a genus ";—3 cobordism between 7'(2, 3)
and T'(2, q). Since T'(2, 3) is slice in CP?, then g < %. Since d is even, then by
Theorem 3.2(1), |§ —1-0(T(2,9)| <1+ 2g. By Tristram [24], 0(T(2,q)) =
—(¢ — 1), and then % + % < ¢ which implies that q;—?’ < gand d = 0.
Therefore, Conjecture 1.1 holds in case d is even.

(2) To prove that Conjecture 1.1 holds in case d = +1, note that T'(2, ¢) is obtained

from L(Z%) by fusion, and then apply Proposition 4.7. |

Proof of Theorem 1.2. If d is even, then by Lemma 4.8(2), gcp2(T(2,q) = %
for 3 < ¢ < 17 and the only possible degree is d = 0; realizable by the twisting disk
A.If d is odd, then by Lemma 4.8, we can assume, from now on, that d € Z—{£1}.

(1) If ¢ = 3 then it is not hard to check that T'(2,3) can be obtained by a sin-
gle (—1,0)-twisting from the unknot. This implies that 7'(2,3) is smoothly
slice in CP?, or equivalentely gcp2(T(2,3)) = 0. To prove that d = 0 is the
only possibility, let (A,dA) C (CP? — B*, $%) be a smooth 2-disk such that

OA = T(2,3), and assume that [A] = dy € Ho(CP? — B* S®). Tt is easy to

check that T'(2, 1) (222 T(—2,3). By [21] and [7], there exists a properly embed-

ded disk D € S%x S? — B such that [D] = 2a + 23 € Ho(S? x S* — B*,8%,7)
and 0D = T(-2,3). The genus g surface ¥ = X, Uppgs D satisfies
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[¥] = dy + 2+ 23 € Hy(CP?*#S? x S?;7Z) and then [£]? = d? + 8. Blowing
up ¥ a number of times equal to d? + 8 gives a genus ¢ surface ¥ C
CP?#8? x S?#(d? + 8)CP? = X (the proper transform) with [%]? = 0. The
last inequqlity of Theorem 3.3 yields that g > %. Therefore, T'(2,3) is not
slice, a contradiction.

(2) For ¢ =5, note that T'(—2,1) T(—2,5). By the same argument as in case
q = 3, Theorem 3.3 yields that g > ‘128—+7. This would contradict the assumptions
g<2and|d|#1.

(3) For ¢ = 7, we can also notice that T(2,1) (49 T(-2,7). By a simi-
lar argument, we get a genus g surface ¥ = 3, Upppz) D such that
[X] = dy + 20+ 43 € Hy(CP?*#5? x 52, 7). Since [¥]? = d? + 16, then blow-
ing up ¥ a number of times equal to d? + 16 gives a genus g surface
3 C CP2#52 x S2#(d? 4+ 16)CP? = X with [¥]? = 0. The last inequality of
Theorem 3.3 yields that g > (fsﬂ' This would contradict the assumptions
g<2and|d|#1.

(4) The case ¢ = 9 is similar to ¢ = 7 since T(—2,1) (49 T(-2,9), then we
can conclude from Theorem 3.3 that g > ‘12‘5—15. Since g < 3, then the
only possibilities are d = +3 and g = 3; excluded by Theorem 3.2(2) and
Lemma 4.1 (03(7(2,9)) = —6).

(5) For g =11, we can check that T'(2,1) (59 T(—-2,11). By a similar argument,
we get a surface ¥ such that [¥] = dy + 2a + 63 € Ha(CP?*#5? x S?;7Z) and
[¥]? = d? + 23. Blowing up ¥ a number of times equal to d? + 24 gives a
surface 3 C CP2#52 x S?4(d? + 24)CP? = X such that [X] = dy + 2a +
68 — =9 e, € Hy(X,Z) and then [S]2 = 0. Since o(X) = —d? — 23,
then Theorem 3.3 implies that g > ‘fgﬂ. Since g < 4, then the only possi-
bilities are d = £3 and g = 4; excluded by Theorem 3.2(2) and Lemma 4.1
(03(T(2,11)) = —8).

(6) For ¢ = 13, we can easily check that T'(2, —1) (59 T(-2,13), and Lemma 4.1
yields that o3(7'(2,13)) = —8. Then, the argument is similar to the case ¢ = 11.

(7) For ¢ = 15, we have T(2,—1) = T(~2,15). Theorem 3.3 implies that
g > %; which excludes the cases where | d |> 5. Lemma 4.1 yields that
03(T(2,15)) = —10; which yields that the case d = £3 and g = 5 are two
possibilities.

(_272)
—

8) For ¢ = 17, we have T(2,—1) =¥ T7(=2,17). Lemma 4.1 yields that

03(T(2,17)) = —12. Then the argument is similar to the case ¢ = 15.
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