Twisting of Composite Torus Knots

Mohamed Ait Nouh

Abstract

We prove that the family of connected sums of torus knots $T(2, p) \# T(2, q) \# T(2, r)$ is nontwisted for any odd positive integers $p, q, r \geq 3$, partially answering in the positive a conjecture of Teragaito [19].

1. Introduction

Let K be a knot in the 3 -sphere S^{3}, and D^{2} a disk intersecting K in its interior. Let n be an integer. A $\left(-\frac{1}{n}\right)$-Dehn surgery along $C=\partial D^{2}$ changes K into a new $\operatorname{knot} K_{n}$ in S^{3}. Let $\omega=\mathrm{lk}\left(\partial D^{2}, L\right)$. We say that K_{n} is obtained from K by (n, ω) twisting (or simply twisting). Then we write $K \xrightarrow{(n, \omega)} K_{n}$ or $K \xrightarrow{(n, \omega)} K(n, \omega)$. We say that K_{n} is an (n, ω)-twisted knot (or simply a twisted knot) if K is the unknot (see Figure 1).

An easy example is depicted in Figure 2, where we show that the right-handed trefoil $T(2,3)$ is obtained from the unknot $T(2,1)$ by a $(+1,2)$-twisting (in this case, $n=+1$ and $\omega=+2$). A less obvious example is given in Figure 3, where it is shown that the composite knot $T(2,3) \# T(2,5)$ can be obtained from the unknot by a $(+1,4)$-twisting (in this case, $n=+1$ and $\omega=+4$); see [10]. Here, $T(2, q)$ denotes the ($2, q$)-torus knot (see [11]).

Active research on twisting of knots started around 1990. One pioneer was the author's Ph.D. thesis advisor Y. Mathieu, who asked the following questions in [13].

Question 1.1. Is every knot in S^{3} twisted? If not, what is the minimal number of twisting disks?

Question 1.2. Is every twisted knot in S^{3} prime?
To answer Question 1.1, Miyazaki and Yasuhara [15] were the first to give an infinite family of knots that are nontwisted. In particular, they showed that the granny knot, that is, the product of two right-handed trefoil knots, is the smallest nontwisted knot. In his Ph.D. thesis [3], the author showed that $T(5,8)$ is the smallest nontwisted torus knot. This was followed by a joint work with Yasuhara [4], in which we gave an infinite family of nontwisted torus knots (i.e., $T(p, p+7)$ for any $p \geq 7$) using some techniques derived from old gauge theory. On the other hand, Ohyama [16] showed that any knot in S^{3} can be untied by (at most) two disks.

[^0]

Figure 1

Figure 2

Figure 3

To answer Question 1.2, Hayashi and Motegi [10] and M. Teragaito [20] independently found examples of composite twisted knots (see Figure 3). In particular, Goodman-Strauss [8] showed that any composite knot of the form $T(p, q)$ \# $T(-q, p+q)$ is a twisted knot for any coprime positive integers $1<p<q$. More generally, Hayashi and Motegi [10] and Goodman-Strauss [8] proved independently that only single twisting (i.e., $|n|=1$) can yield a composite knot. The tools used were combinatorial methods as in CGLS [5]. Moreover, Goodman-Strauss [8] proved that K_{1} and K_{-1} cannot both be composite and classified all composite knots of the form $K_{1} \# K_{2}$, where K_{1} and K_{2} are both prime knots (for an extensive list of twisted composite knots, we refer the reader to the appendix of Goodman-Strauss's paper [8]). However, there is no known twisted knot with three or more factors, that is, $k=k_{1} \# k_{2} \# \ldots \# k_{m}$, where k_{i} is a prime
knot for $i=1,2, \ldots, m$, and $m \geq 3$, which motivates the still open Teragaito's conjecture.

Conjecture 1.1 (Teragaito [19]). Any composite knot with three or more factors is nontwisted.

In this paper, we prove the following theorem.
Theorem 1.1. $T(2, p) \# T(2, q) \# T(2, r)$ is not twisted for any odd positive integers $p, q, r \geq 3$.

2. Preliminaries

In what follows, let X be a smooth, closed, oriented, simply connected 4manifold. Then the second homology group $H_{2}(X ; \mathbb{Z})$ is finitely generated (for details, we refer to the book by Milnor and Stasheff [14]). The ordinary form $q_{X}: H_{2}(X ; \mathbb{Z}) \times H_{2}(X ; \mathbb{Z}) \longrightarrow \mathbb{Z}$ given by the intersection pairing for 2-cycles such that $q_{X}(\alpha, \beta)=\alpha \cdot \beta$ is a symmetric unimodular bilinear form. The signature of this form, denoted $\sigma(X)$, is the difference of the numbers of positive and negative eigenvalues of a matrix representing q_{X}. Let $b_{2}^{+}(X)$ (resp. $\left.b_{2}^{-}(X)\right)$ be the rank of the positive (resp. negative) part of the intersection form of X. The second Betti number is $b_{2}(X)=b_{2}^{+}(X)+b_{2}^{-}(X)$, and the signature is $\sigma(X)=b_{2}^{+}(X)-b_{2}^{-}(X)$. From now on, a homology class in $H_{2}\left(X-B^{4}, \partial ; \mathbb{Z}\right)$ is identified with its image by the homomorphism

$$
H_{2}\left(X-B^{4}, \partial\left(X-B^{4}\right) ; \mathbb{Z}\right) \cong H_{2}\left(X-B^{4} ; \mathbb{Z}\right) \longrightarrow H_{2}(X ; \mathbb{Z})
$$

Recall that $\mathbb{C P}^{2}$ is the closed 4-manifold obtained by the free action of $\mathbb{C}^{*}=\mathbb{C}-\{0\}$ on $\mathbb{C}^{3}-\{(0,0,0)\}$ defined by $\lambda(x, y, z)=(\lambda x, \lambda y, \lambda z)$, where $\lambda \in \mathbb{C}^{*}$, that is, $\mathbb{C P}^{2}=\left(\mathbb{C}^{3}-\{(0,0,0)\}\right) / \mathbb{C}^{*}$. An element of $\mathbb{C P}^{2}$ is denoted by its homogeneous coordinates $[x: y: z]$, which are defined up to the multiplication by $\lambda \in \mathbb{C}^{*}$. The fundamental class of the submanifold $H=\{[x: y: z] \in$ $\left.\mathbb{C P}^{2} \mid x=0\right\}\left(H \cong \mathbb{C P}^{1}\right)$ generates the second homology group $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)($ see Gompf and Stipsicz [8]). Since $H \cong \mathbb{C P}^{1}$, the standard generator of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ is denoted, from now on, by $\gamma=\left[\mathbb{C P}^{1}\right]$. Therefore, the standard generator of $H_{2}\left(\mathbb{C P}^{2}-B^{4} ; \mathbb{Z}\right)$ is $\mathbb{C P}^{1}-B^{2} \subset \mathbb{C P}^{2}-B^{4}$ with complex orientations.

Let $\alpha=S^{2} \times\{\star\}$ and $\beta=\{\star\} \times S^{2}$ denote the standard generators of $H_{2}\left(S^{2} \times S^{2} ; \mathbb{Z}\right)$ such that $\alpha^{2}=\beta^{2}=0, \alpha \cdot \beta=1$, and let γ (resp. $\bar{\gamma}$) be the standard generators of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)\left(\right.$ resp. $\left.H_{2}\left(\overline{\mathbb{C P}^{2}} ; \mathbb{Z}\right)\right)$ with $\gamma^{2}=+1$ (resp. $\bar{\gamma}^{2}=-1$).

A second homology class $\xi \in H_{2}(X ; \mathbb{Z})$ is said to be characteristic if ξ is dual to the second Stiefel-Whitney class $w_{2}(X)$ or, equivalently,

$$
\xi \cdot x \equiv x \cdot x \quad(\bmod 2)
$$

for any $x \in H_{2}(X ; \mathbb{Z})$ (we leave the details to Milnor and Stasheff [14]).

Example 2.1. $(a, b) \in H_{2}\left(S^{2} \times S^{2} ; \mathbb{Z}\right)$ is characteristic if and only if a and b are both even.

Example 2.2. $d \gamma \in H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ is characteristic if and only if d is odd.
The following theorems give obstructions on the genus of an embedded surface representing either a characteristic class or bounding a knot in a punctured 4manifold. Recall that the Arf invariant of a knot K is denoted by $\operatorname{Arf}(K), \sigma_{p}(K)$ denotes the Tristram p-signature [21], and $e_{2}(K)$ denotes the minimum number of generators of $H_{2}\left(X_{K} ; \mathbb{Z}\right)$, where X_{K} is the 2-fold branched covering of S^{3} along K.

Theorem 2.1 (Acosta [1]). Suppose that ξ is a characteristic homology class in an indefinite smooth oriented 4 -manifold of genus g. Let $m=\min \left(b_{2}^{+}(X)\right.$, $\left.b_{2}^{-}(X)\right)$.
(1) If $\xi^{2} \equiv \sigma(X) \bmod 16$, then either $\xi^{2}=\sigma(X)$ or, if not,
(a) If $\xi^{2}=0$ or ξ^{2} and $\sigma(X)$ have the same sign, then $\left|\xi^{2}-\sigma(X)\right| / 8 \leq$ $m+g-1$.
(b) If $\sigma(X)=0$ or ξ^{2} and $\sigma(X)$ have opposite signs, then $\left|\xi^{2}-\sigma(X)\right| / 8 \leq$ $m+g-2$.
(2) If $\xi^{2} \equiv \sigma(X)+8 \bmod 16$, then
(a) If $\xi^{2}=-8$ or $\xi^{2}+8$ and $\sigma(X)$ have the same sign, then $\mid \xi^{2}+8-$ $\sigma(X) \mid / 8 \leq m+g+1$.
(b) If $\sigma(X)=0$ or $\xi^{2}+8$ and $\sigma(X)$ have opposite signs, then $\mid \xi^{2}+8-$ $\sigma(X) \mid / 8 \leq m+g$.

Theorem 2.2 (Gilmer [7] and Viro [22]). Let X be an oriented compact 4manifold with $\partial X=S^{3}$, and K a knot in ∂X. Suppose that K bounds a surface of genus g in X representing an element ξ in $H_{2}(X ; \partial X)$.
(1) If ξ is divisible by an odd prime d, then $\left|\left(d^{2}-1\right) /\left(2 d^{2}\right) \xi^{2}-\sigma(X)-\sigma_{d}(K)\right| \leq$ $\operatorname{dim} H_{2}\left(X ; \mathbb{Z}_{d}\right)+2 g$.
(2) If ξ is divisible by 2 , then $\left|\xi^{2} / 2-\sigma(X)-\sigma(K)\right| \leq \operatorname{dim} H_{2}\left(X ; \mathbb{Z}_{2}\right)+2 g$.

Theorem 2.3 (Robertello [17]). Let X be an oriented compact 4-manifold with $\partial X=S^{3}$, and K a knot in ∂X. Suppose that K bounds a disk in X representing a characteristic element ξ in $H_{2}(X ; \partial X)$. Then $\left(\xi^{2}-\sigma(X)\right) / 8 \equiv \operatorname{Arf}(K)(\bmod 2)$.

Lemma 2.1. If K is a knot obtained by a $(-1, \omega)$-twisting from the unknot K_{0}, then K bounds a properly embedded smooth disk $(D, \partial D) \subset\left(\mathbb{C P}^{2}-B^{4}, \partial\left(\mathbb{C P}^{2}-\right.\right.$ $\left.\left.B^{4}\right)\right)$ such that $[D]=\omega \gamma \in H_{2}\left(\mathbb{C P}^{2}-B^{4}, \partial\left(\mathbb{C P}^{2}-B^{4}\right) ; \mathbb{Z}\right)$.

Recall, for convenience of the reader, a proof of Lemma 2.1. As shown in Figure 4, let D be a disk on which the $(-1, \omega)$-twisting is performed. Note that the $(+1)$ Dehn surgery on $\partial D=C$ changes K_{0} to K. Regard K_{0} and D as contained in the boundary of a four-dimensional 0 -handle h^{0}. Then attach a 2 -handle h^{2} to h^{0} along ∂D with framing +1 . Since $\mathbb{C P}^{2}=h^{0} \cup h^{2} \cup h^{3}$ with $h^{0} \cong B^{4}$ and $h^{3} \cong$

Figure 4

Figure 5 The link $L(p, q)$
B^{4}, the resulting 4-manifold $h^{0} \cup h^{2}$ is diffeomorphic to $\mathbb{C P}^{2}-B^{4}$ (see [12]). Let $(\Delta, \partial \Delta) \subset\left(B^{4}, \partial B^{4} \cong S^{3}\right)$ be a compact and orientable disk with $\partial \Delta=K_{0}$. Since $\operatorname{lk}\left(K_{0}, \partial D\right)=\omega$, we can check that $[\Delta]=\omega \gamma \in H_{2}\left(\mathbb{C P}^{2}-B^{4}, S^{3} ; \mathbb{Z}\right)$, where γ is the standard generator of $H_{2}\left(\mathbb{C P}^{2}-B^{4}, S^{3} ; \mathbb{Z}\right)$.

Lemma 2.2 (Nakanishi [15]). Suppose that K is obtained from a trivial knot K_{0} by (n, ω)-twisting. If ω is even, then $e_{2}(K) \leq 2$.

Lemma 2.3 (Ait Nouh [2]). The d-signature of a $(2, q)$-torus knot $T(2, q)$ is given by the formula

$$
\sigma_{d}(T(2, q))=-(q-1)-\left[\frac{q}{2 d}\right]
$$

To prove Theorem 1.1, we recall the definition of band surgery.
Let L be a c-component oriented link. Let B_{1}, \ldots, B_{b} be mutually disjoint oriented bands in S^{3} such that $B_{i} \cap L=\partial B_{i} \cap L=\alpha_{i} \cup \alpha_{i}^{\prime}$, where $\alpha_{1}, \alpha_{1}^{\prime}, \ldots, \alpha_{b}, \alpha_{b}^{\prime}$ are disjoint connected arcs. The closure of $L \cup \partial B_{1} \cup \cdots \cup \partial B_{b}$ is also a link L^{\prime}.

Definition 2.1. If L^{\prime} has the orientation compatible with the orientation of $L-\bigcup_{i=1, \ldots, b} \alpha_{i} \cup \alpha_{i}^{\prime}$ and $\bigcup_{i=1, \ldots, b}\left(\partial B_{i}-\alpha_{i} \cup \alpha_{i}^{\prime}\right)$, then L^{\prime} is called the link obtained by the band surgery along the bands B_{1}, \ldots, B_{b}. If $c=b+1$, then this operation is called a fusion.

Example 2.3. Let $L(p, q)=C_{1} \cup \cdots \cup C_{p} \cup C_{1}^{\prime} \cup \cdots \cup C_{q}^{\prime}$ denote the $((p, 0),(q, 0))$-cable on the Hopf link with linking number 1 (see Figure 5). Then

Figure 6
$T(2,5)($ resp. $T(2,7))$ can be obtained from $L(2,2)$ (resp. $L(2,4)$) by fusion (see Figure 6).

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following proposition.
Proposition 3.1. $T(2, p) \# T(2, q) \# T(2, r)$ is obtained from $L\left(2, g^{*}+\ell\right)$ by adding $b=g^{*}+\ell+5$ bands, where g^{*} denotes the 4 -ball genus of $T(2, p)$ \# $T(2, q) \# T(2, r)$, and ℓ is the number of integers in the set $\{p, q, r\}$ that are congruent to 3 modulo 4 . In particular, there is a cobordism of genus two between $L\left(2, g^{*}+\ell\right)$ and $T(2, p) \# T(2, q) \# T(2, r)$, where $g^{*}+\ell$ is always even.

Proof. Figure 7 shows that if $p \equiv 1(\bmod 4)($ resp. $p \equiv 3(\bmod 4))$, then $T(2, p)$ is obtained from $L\left(2, \frac{p-1}{2}\right)$ (resp. $L\left(2, \frac{p+1}{2}\right)$) by fusion, that is, by adding $\frac{p-1}{2}+1$ (resp. $\frac{p+1}{2}+1$) bands. Therefore, to prove the proposition, there are four cases to distinguish:
Case I. $p \equiv q \equiv r \equiv 1(\bmod 4)$.
Case II. $p \equiv 3$ and $q \equiv r \equiv 1(\bmod 4)$.

(a) $p \equiv 1$ (mod.4)

(b) $p \equiv 3$ (mod.4)

Figure 7

Case III. $p \equiv q \equiv 3(\bmod 4)$ and $r \equiv 1(\bmod 4)$.
Case IV. $p \equiv q \equiv r \equiv 3(\bmod 4)$.
By a band surgery with $b=2, L\left(2, g^{*}+\ell\right)$ can be turned into a connected sum of $L\left(2, \frac{p \pm 1}{2}\right), L\left(2, \frac{q \pm 1}{2}\right), L\left(2, \frac{r \pm 1}{2}\right)$, which has $g^{*}+\ell+4$ components. Since each of the summands can be turned into $T(2, p), T(2, q), T(2, r)$, respectively, by a fusion, we have that $T(2, p) \# T(2, q) \# T(2, r)$ can be obtained from $L\left(2, g^{*}+\ell\right)$ by a band surgery with $b=g^{*}+\ell+5$. Since the proofs of these cases are similar, we provide more details for the case $\ell=0$.

Case I. $p \equiv q \equiv r \equiv 1(\bmod 4)$.
This is equivalent to $\ell=0$. As shown in Figures 7 and $8, k=T(2, p) \#$ $T(2, q) \# T(2, r)$ can be obtained from the link $L\left(2, \frac{p-1}{2}+\frac{q-1}{2}+\frac{r-1}{2}\right)=L\left(2, g^{*}\right)$ by adding the number of bands equal to

$$
\begin{aligned}
b & =\frac{p-1}{2}+\frac{q-1}{2}+\frac{r-1}{2}+5 \\
& =g^{*}+5 .
\end{aligned}
$$

Note that $c=\frac{p-1}{2}+\frac{q-1}{2}+\frac{r-1}{2}+2$ or, equivalently, $c=g^{*}+2$. Since $g_{c}=$ $\frac{1-c+b}{2}$, we have that $g_{c}=2$ and $g^{*}+\ell=g^{*}$ is even.

Note that in all four cases, $b=g^{*}+\ell+5$ and $c=g^{*}+\ell+2$, and, therefore, there is a cobordism of genus $g_{c}=\frac{1-c+b}{2}(=2)$ (see [6]) between $L\left(2, g^{*}+3\right)$ and k.

Proof of Theorem 1.1. Assume for a contradiction that $K \cong T(2, p) \# T(2, q)$ \# $T(2, r)$ can be obtained by (n, ω)-twisting from an unknot K_{0}. Since $e_{2}(T(2, p) \#$ $T(2, q) \# T(2, r))>2$, by Lemma 2.2, ω is odd. Since K is a composite knot, $n=$ ± 1 (see $[10 ; 9]$). The following proofs are based on the gluing of two punctured standard 4-manifolds, as depicted in Figure 9.

Case I. Assume that $n=+1$. Then $\bar{K}=T(-2, p) \# T(-2, q) \# T(-2, r)$ can be obtained by $(-1, \omega)$-twisting along an unknot \bar{K}_{0}, the inverse of the mirror-image of K_{0} (see [3]). By Lemma 2.1 this yields that \bar{K} bounds a disk $(D, \partial D) \subset\left(\mathbb{C P}^{2}-B^{4}, \partial\left(\mathbb{C P}^{2}-B^{4}\right) \cong S^{3}\right)$ such that $[D]=\omega \gamma \in H_{2}\left(\mathbb{C P}^{2}-\right.$ $\left.B^{4}, S^{3} ; \mathbb{Z}\right)$, where γ denotes the standard generator of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$ with $\gamma^{2}=+1$.

On the other hand, there exist a 4-ball J and a mutually disjoint union of $g^{*}+\ell+2$ properly embedded 2 -disks $\Delta_{1}, \Delta_{2}, \ldots, \Delta_{g^{*}+\ell+2}$ such that $\Delta=$

Figure 8 Case I: $p \equiv q \equiv r \equiv 1(\bmod 4)$
$\bigcup_{i=1}^{i=g^{*}+\ell+2} \Delta_{i}$ bounds $L\left(2, g^{*}+\ell\right)$ with $0 \leq \ell \leq 3$ in $S^{2} \times S^{2}-J$ and $[\Delta]=$ $2 \alpha+\left(g^{*}+\ell\right) \beta \in H_{2}\left(S^{2} \times S^{2}-J, \partial\left(S^{2} \times S^{2}-J\right) \cong S^{3} ; \mathbb{Z}\right)$, where α, β denote the standard generators of $H_{2}\left(S^{2} \times S^{2} ; \mathbb{Z}\right)$ with $\alpha^{2}=\beta^{2}=0, \alpha \cdot \beta=1$, and g^{*} denotes the 4-ball genus of K.

Since K is obtained from $L\left(2, g^{*}+\ell\right)$ by the band surgery described in Proposition 3.1, there exists a $\left(g^{*}+\ell+3\right)$-punctured genus-two surface \hat{F} in $S^{3} \times[0,1] \subset J$ such that we can identify this band surgery with $\hat{F} \cap\left(S^{3} \times\{1 / 2\}\right)$, $\partial \hat{F}=L\left(2, g^{*}+\ell\right) \cup k$ with $L\left(2, g^{*}+\ell\right)$ lies in $S^{3} \times\{0\} \cong \partial J \times\{0\}$, and K lies in $S^{3} \times\{1\} \cong \partial J \times\{1\}$. The 3-sphere $S^{3} \times\{1\}(\cong \partial J \times\{1\})$ bounds a 4-ball $B^{4} \subset J$. The surface $F=\Delta \cup \hat{F}$ is a smooth genus-two surface properly embedded in $S^{2} \times S^{2}-B^{4}$ and with boundary K such that

$$
[F]=2 \alpha+\left(g^{*}+\ell\right) \beta \in H_{2}\left(S^{2} \times S^{2}-B^{4}, \partial\left(S^{2} \times S^{2}-B^{4}\right) \cong S^{3} ; \mathbb{Z}\right)
$$

Figure 9

The genus-two smooth and closed surface $\Sigma=F \cup D$ satisfies

$$
[\Sigma]=2 \alpha+\left(g^{*}+\ell\right) \beta+\omega \gamma \in H_{2}\left(S^{2} \times S^{2} \# \mathbb{C P}^{2} ; \mathbb{Z}\right)
$$

By Lemma 2.2, ω is odd, and by Proposition 3.1, $g^{*}+\ell$ is even. Then, $\xi=[\Sigma]$ is a characteristic class in $H_{2}\left(S^{2} \times S^{2} \# \mathbb{C P} ; \mathbb{Z}\right)$. Furthermore, $X=S^{2} \times S^{2} \# \mathbb{C P}^{2}$ is homeomorphic to $\mathbb{C P}^{2} \# \overline{\mathbb{C P}^{2}} \# \mathbb{C P}^{2}$ (e.g., see Scorpan's book [18], p. 239, or Corollary 4.3 in Kirby's book [12], p. 11). Note that ξ^{2} and $\sigma(X)$ have the same signs, $m=1$, and $g=2$. Therefore, by Theorem 2.1(1)(a) and Theorem 2.1(2)(a),

$$
\frac{\left|\xi^{2}-\sigma(X)\right|}{8} \leq 3
$$

or, equivalently,

$$
\frac{4\left(g^{*}+\ell\right)+\omega^{2}-1}{8} \leq 3
$$

This yields that the only possibilities are $g^{*}=3$ or 4 and $\omega= \pm 1$; equivalently, $K=T(2,3) \# T(2,3) \# T(2,3)$, then $\ell=3$ or $K=T(2,3) \# T(2,3) \# T(2,5)$, and then $\ell=2$ with $\omega= \pm 1$. Then K would bound a disk $(D, \partial D) \subset\left(\overline{\mathbb{C P}^{2}}-\right.$ $\left.B^{4}, \partial\left(\overline{\mathbb{C P}^{2}}-B^{4}\right)\right)$ such that

$$
\xi=[D]= \pm \bar{\gamma} \in H_{2}\left(\overline{\mathbb{C P}^{2}}-B^{4}, \partial\left(\overline{\mathbb{C P}^{2}}-B^{4}\right) ; \mathbb{Z}\right)
$$

where $\bar{\gamma}$ is the standard generator of $H_{2}\left(\overline{\mathbb{C P}^{2}}-B^{4}, \partial\left(\overline{\mathbb{C P}^{2}}-B^{4}\right) ; \mathbb{Z}\right)$ with $\bar{\gamma}^{2}=$ -1 , and therefore $\left|\xi^{2}-\sigma(X)\right| / 8=0$. This contradicts Theorem 2.3 since $\operatorname{Arf}(K)=1$.

Case II. Assume that $n=-1$. Then there are two cases to exclude.
Case $\operatorname{II}(\mathrm{a})$. If ω is divisible by a prime $d \geq 3$, then by Lemma $2.1, k$ bounds a smooth disk $(D, \partial D) \subset\left(\mathbb{C P}^{2}-B^{4}, \partial\left(\mathbb{C P}^{2}-B^{4}\right) \cong S^{3}\right)$ such that $\xi=[D]=\omega \gamma \in H_{2}\left(\mathbb{C P}^{2}-B^{4} ; S^{3} ; \mathbb{Z}\right)$. By Lemma 2.3 the signatures are

$$
\sigma(K)=-(p+q+r-3) \quad \text { and }
$$

$\sigma_{d}(K)=-(p-1)-\left[\frac{p}{2 d}\right]-(q-1)-\left[\frac{q}{2 d}\right]-(r-1)-\left[\frac{r}{2 d}\right] \quad$ (see [2]).
This contradicts Theorem 2.2.
Case $\operatorname{II}(\mathrm{b})$. If $\omega= \pm 1$, then by the same argument as in Case I, this would yield the existence of a genus-two surface that satisfies

$$
\xi=[\Sigma]=2 \alpha+\left(g^{*}+\ell\right) \beta+\bar{\gamma} \in H_{2}\left(S^{2} \times S^{2} \# \overline{\mathbb{C P}^{2}} ; \mathbb{Z}\right)
$$

If we let $X=S^{2} \times S^{2} \# \overline{\mathbb{C P}^{2}}$, then ξ^{2} and $\sigma(X)$ have opposite signs with $m=1$ and $g=2$. Therefore, by Theorem 2.1(1)(b) and Theorem 2.1(2)(b),

$$
\frac{\left|\xi^{2}-\sigma(X)\right|}{8} \leq 2
$$

or, equivalently, $g^{*}+\ell \leq 4$. This yields that the only possibilities are $g^{*}=3$ or 4; equivalently, $K=T(2,3) \# T(2,3) \# T(2,3)$, then $\ell=3$ or $K=T(2,3)$ \# $T(2,3) \# T(2,5)$, and then $\ell=2$. Therefore, $g^{*}+\ell=6$, a contradiction.

Acknowledgments. I would like to thank the referee for his valuable suggestions and the University of El Paso at Texas (UTEP), Mathematical Sciences Department, for hospitality.

References

[1] D. Acosta, Spin orbifolds and the minimal genus problem, Dissertation, Tulane University, 1997.
[2] M. Ait Nouh, Genera and degrees of torus knots in $\mathbb{C P}^{2}$, J. Knot Theory Ramifications 18 (2009), no. 9, 1299-1312.
[3] ,Les nœuds qui se dénouent par twist de Dehn dans la 3-sphère, Ph.D. thesis, University of Provence, Marseille, France, 2000.
[4] M. Ait Nouh and A. Yasuhara, Torus knots that cannot be untied by twisting, Rev. Mat. Complut. XIV (2001), no. 8, 423-437.
[5] M. Culler, C. M. Gordon, J. Luecke, and P. B. Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987), 237-300.
[6] R. Fox and J. Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math. 3 (1966), 257-267.
[7] P. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc. 264 (1981), 353-380.
[8] R. E. Gompf and A. I. Stipsicz, 4-Manifolds and Kirby calculus, Grad. Stud. Math. 20, Amer. Math. Society, Providence, Rhode Island, 1999.
[9] C. Goodman-Strauss, On composite twisted unknots, Trans. Amer. Math. Soc. 349 (1997), 4429-4463.
[10] C. Hayashi and K. Motegi, Only single twisting on unknots can produce composite knots, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4897-4930.
[11] A. Kawauchi, A survey on knot theory, Birkhauser-Verlag, Basel-Boston-Berlin, 1996.
[12] R. C. Kirby, The topology of 4-manifolds, Lecture Notes in Math., Springer-Verlag, 1980.
[13] Y. Mathieu, Unknotting, knotting by twists on disks and property P for knots in S^{3}, Knots 90: proc. 1990 Osaka conf. on knot theory and related topics, pp. 93-102, de Gruyter, 1992.
[14] J. Milnor and J. D. Stasheff, Characteristic classes, Princeton University Press, 1974.
[15] K. Miyazaki and A. Yasuhara, Knots that cannot be obtained from a trivial knot by twisting, Contemp. Math. 164 (1994), 139-150.
[16] Y. Ohyama, Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madr. 7 (1994), 289-305.
[17] R. Robertello, An Arf invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543-555.
[18] A. Scorpan, The wild world of 4-manifolds, Amer. Math. Soc., Providence, Rhode Island, 2005.
[19] M. Teragaito, Composite knots trivialized by twisting, J. Knot Theory Ramifications 1 (1992), no. 4, 467-470.
[20] , Twisting operations and composite knots, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1623-1629.
[21] A. G. Tristram, Some cobordism invariants for links, Math. Proc. Cambridge Philos. Soc. 66 (1969), 251-264.
[22] O. Y. Viro, Link types in codimension-2 with boundary, Uspekhi Mat. Nauk 30 (1970), 231-232 (Russian).

Department of Mathematical Sciences, Bell Hall 144
The University of Texas at El Paso
500 University Avenue
El Paso, TX 79968
USA

manouh@utep.edu

[^0]: Received July 12, 2015. Revision received March 9, 2016.

