MATRIX ALGEBRAS WITH MULTIPLICATIVE DECOMPOSITION PROPERTY

PIOTR J. WOJCIECHOWSKI

Abstract

We will continue our studies of subalgebras of $M_{n}(\mathbb{R})$ that have the MD property. Recall that a directly entry-wise ordered algebra \mathcal{A} of $M_{n}(\mathbb{R})$ satisfies the Multiplicative Decomposition property if for every $0 \leq A, B, C \in \mathcal{A}$ such that $C \leq A B$, there exist $0 \leq A^{\prime}, B^{\prime} \in \mathcal{A}$ such that $C=A^{\prime} \bar{B}^{\prime}$. Previously we proved that every such algebra embeds into some \mathcal{A}_{σ}, i.e. into an algebra of matrices with a given signature (for every i, the $i^{\text {th }}$ row or the $i^{\text {th }}$ column has at most one nonzero entry and it is at the $i^{\text {th }}$ place).

We will show now that in the diagonal part of \mathcal{A} there is a matrix D with the property that if $d_{i i} \neq 0$ and $d_{j j} \neq 0$ for some $i \neq j$, then for every matrix $A \in \mathcal{A}, a_{i j}=0$.

We conjecture that a directly ordered subalgebra \mathcal{A} of $M_{n}(\mathbb{R})$ has the MD property if and only if it is a subalgebra of some \mathcal{A}_{σ} and it satisfies the above condition.

Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968

E-mail address: piotrw@utep.edu

