MATRIX ALGEBRAS WITH MULTIPLICATIVE DECOMPOSITION PROPERTY

PIOTR J. WOJCIECHOWSKI

ABSTRACT. We will continue our studies of subalgebras of $M_n(\mathbb{R})$ that have the MD property. Recall that a directly entry-wise ordered algebra \mathcal{A} of $M_n(\mathbb{R})$ satisfies the *Multiplicative Decomposition* property if for every $0 \leq A, B, C \in \mathcal{A}$ such that $C \leq AB$, there exist $0 \leq A', B' \in \mathcal{A}$ such that C = A'B'. Previously we proved that every such algebra embeds into some \mathcal{A}_{σ} , i.e. into an algebra of matrices with a given signature (for every *i*, the *i*th row or the *i*th column has at most one nonzero entry and it is at the *i*th place).

We will show now that in the diagonal part of \mathcal{A} there is a matrix D with the property that if $d_{ii} \neq 0$ and $d_{jj} \neq 0$ for some $i \neq j$, then for every matrix $A \in \mathcal{A}$, $a_{ij} = 0$.

We conjecture that a directly ordered subalgebra \mathcal{A} of $M_n(\mathbb{R})$ has the MD property if and only if it is a subalgebra of some \mathcal{A}_{σ} and it satisfies the above condition.

Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX79968

 $E\text{-}mail \ address: \verb"piotrw@utep.edu"$