MATRIX ALGEBRAS WITH MULTIPLICATIVE DECOMPOSITION PROPERTY II

PIOTR J. WOJCIECHOWSKI

ABSTRACT. We say that a directly entry-wise ordered algebra \mathcal{A} of $n \times n$ matrices satisfies the *Multiplicative Decomposition* property if for every $0 \leq A, B, C \in \mathcal{A}$ such that $C \leq AB$, there exist $0 \leq A', B' \in \mathcal{A}$ such that C = A'B'. Let a signature be an *n*-element sequence $\sigma = (s_i)$, where $s_i = R$ or C. We say that the matrix A has the signature σ if for $i = 1, \ldots, n, a_{ij} = 0$ for every $j \neq i$ provided that $s_i = R$, and $a_{ji} = 0$ for every $j \neq i$ provided that $s_i = C$. The collection of all matrices with a given signature forms an algebra with the MD property. We will call such an algebra a signature algebra and denote it by \mathcal{A}_{σ} . We prove the embedding theorem: Every matrix algebra with the MD property embeds in some \mathcal{A}_{σ} . We conjecture more, that every matrix algebra with the MD property is isomorphic to a direct sum of full specific subalgebras of \mathcal{A}_{σ} and \mathbb{R}^k for some k. We prove the conjecture in case of algebras of matrices having at most one non-diagonal entry.

Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX79968

E-mail address: piotrw@utep.edu