MATRIX ALGEBRAS WITH MULTIPLICATIVE DECOMPOSITION PROPERTY II

PIOTR J. WOJCIECHOWSKI

Abstract

We say that a directly entry-wise ordered algebra \mathcal{A} of $n \times n$ matrices satisfies the Multiplicative Decomposition property if for every $0 \leq$ $A, B, C \in \mathcal{A}$ such that $C \leq A B$, there exist $0 \leq A^{\prime}, B^{\prime} \in \mathcal{A}$ such that $C=$ $A^{\prime} B^{\prime}$. Let a signature be an n-element sequence $\sigma=\left(s_{i}\right)$, where $s_{i}=R$ or C. We say that the matrix A has the signature σ if for $i=1, \ldots, n, a_{i j}=0$ for every $j \neq i$ provided that $s_{i}=R$, and $a_{j i}=0$ for every $j \neq i$ provided that $s_{i}=C$. The collection of all matrices with a given signature forms an algebra with the MD property. We will call such an algebra a signature algebra and denote it by \mathcal{A}_{σ}. We prove the embedding theorem: Every matrix algebra with the $M D$ property embeds in some \mathcal{A}_{σ}. We conjecture more, that every matrix algebra with the MD property is isomorphic to a direct sum of full specific subalgebras of \mathcal{A}_{σ} and \mathbb{R}^{k} for some k. We prove the conjecture in case of algebras of matrices having at most one non-diagonal entry.

Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968

E-mail address: piotrw@utep.edu

