

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhD

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhD

Notation

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhE Traditionally, quadrature refers to area.

Numerical Integration rule is also called numerical quadrature rule.

General form of the integration rule

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, Ph[Towards designing a general integration rule, we first extract the general form of this rule:

$$I_n(f) = \sum_{j=1}^n \omega_j f(x_j)$$

where

- \mathbf{w}_j denote the weights of the integration rule,
- \blacksquare x_i denote the nodes of the integration rule.

Let us see how this fits with the two integration rules we have learnt.

General form of the integration rule

Analysis: Gaussian Numerical Integration

Numerical

Natasha S. Sharma, PhD The trapezoidal rule:

$$\int_a^b f(x) \ dx \approx \frac{b-a}{2} \Big[f(a) + f(b) \Big] \equiv T_1(f).$$

Weights:
$$w_1 = w_2 = \frac{b-a}{2}$$
,

Nodes:
$$x_1 = a, x_2 = b.$$

$$T_1(f) = w_1 f(x_1) + w_2 f(x_2)$$

General form of the integration rule

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhD The Simpson's rule:

$$\int_a^b f(x) \ dx \approx \frac{h}{3} \Big[f(a) + 4f(\frac{a+b}{2}) + f(b) \Big] \equiv S_2(f).$$

Weights:
$$w_1 = h/3$$
 $w_2 = 4h/3$, $w_3 = h/3$

Nodes:
$$x_1 = a$$
, $x_2 = \frac{a+b}{2}$, $x_3 = b$.

$$S_2(f) = w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3)$$

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhE

Definition (Exactness of an integration formula)

Consider an integration formula

$$I_1(f) = w_1 f(x_1) + w_2 f(x_2).$$

This formula is said to be exact wrt f(x) if

$$I(f) = I_1(f)$$

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhE

Example

Consider approximating $I(f) = \int_0^1 f(x) dx$ by the Trapezoidal integration rule

$$T_1(f) \equiv \frac{1}{2} \Big[f(0) + f(1) \Big],$$

for any choice of f(x).

We check which polynomial functions of the form $f(x) = 1, x, x^2, \dots x^p, p > 0$ is this integration rule exact.

$$f(x) = 1$$
, $I(f) = \int_0^1 f(x) dx = 1$ $T_1(f) = \frac{1}{2} [f(0) + f(1)] = 1$.

So, the integration rule is exact for f(x) = 1.

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, Phl

$$f(x) = x$$
, $I(f) = \int_0^1 f(x) \ dx = \frac{1}{2}$ $T_1(f) = \frac{1}{2} \Big[f(0) + f(1) \Big] = \frac{1}{2}$

So, the integration rule is exact for f(x) = x.

$$f(x) = x^2$$
, $I(f) = \int_0^1 f(x) dx = \frac{1}{3}$ $T_1(f) = \frac{1}{2}$.

So the integration rule is not exact for $f(x) = x^2$.

 $T_1(f)$ is exact for polynomials of degree upto 1.

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, Ph[To characterize the accuracy we demand from the integration rule, we introduce the notion of *degree of precision*.

Definition (Degree of Precision (DoP))

The degree of accuracy or precision of a quadrature/integration formula is the largest positive integer N such that the formula is exact for $1, x, x^2, \dots x^N$.

Example

The trapezoidal rule has DoP 1.

Proof.

Refer to the previous example.

Remark

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, Phi

The DoP of a quadrature formula is N if and only if the error is zero for all polynomials of degree $k=0,\cdots N,$, but is NOT zero for some polynomial of degree N+1.

Numerical Integration: A General Framework

Numerical Analysis: Gaussian Numerical Integration

Example

The Simpson's rule has DoP 3.

We observe that for

$$f(x) = 1, x, x^2, x^3 I(f) = S_2(f).$$

$$=1, x, x^2, x^3$$

However, $f(x) = x^4$, $I(f) = \int_0^1 f(x) dx = \frac{1}{5} = 0.2$,

$$(t) = \int_{t}^{t}$$

while, $S_2(f) = \frac{h}{3} [f(0) + 4f(0.5) + f(1)], h = 1/2$

$$(1 - \frac{1}{3})$$

$$\frac{1}{6} \times 0 + \frac{4}{6} \times 0.5^{3} + \frac{1}{6} \times 1 = 0.25.$$

$$r \quad f(x) = 1,$$

$$I(f) = S_2(f)$$
 for $f(x) = 1, x, x^2, x^3$;
 $I(f) \neq S_2(f)$ for $f(x) = x^4$.

Table for Gaussian Quadrature

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, Ph[For another quadrature rule $I_n(f)$ to approximate $\int_{-1}^{1} f(x) dx$ of the form

$$I_n(f) = \sum_{i=1}^n w_i f(x_i)$$

we follow the weights and nodes given by the table:

n	Xį	Wi	n	Xį	Wi
2	± 0.57735	1	4	± 0.8611	0.3478
				± 0.33998	0.6521
3	± 0.77459	0.555	5	± 0.9061	0.2369
	0	0.8888		± 0.5384	0.4786
				0.0	0.5688

Table: n-point Gaussian Quadrature rule

Example

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhD

Example

Apply the 2 and 3 points Gaussian numerical integration formula to obtain an approximation $I_n(f)$ for $I = \int\limits_{-1}^1 e^x dx$. Use the nodes and weights provided in Table.

Proof.

$$I_2(f) = 1 \times e^{(-0.57735)} + 1 \times e^{(0.57735)}.$$

 $I_3(f) = 0.555 \times e^{(-0.33998)} + 0.8888 \times e^{(0)} + 0.555 \times e^{(0.33998)}.$

Another example

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhD

Example

Apply the 2 and 3 points Gaussian numerical integration formula to obtain an approximation $I_n(f)$ for $I = \int\limits_{-1}^1 e^{-x^2} dx$. Use the nodes and weights provided in Table.

Proof.

$$I_2(f) = 1 \times e^{-(-0.57735)^2} + 1 \times e^{-(0.57735)^2}.$$

 $I_3(f) = 0.555 \times e^{-(-0.33998)^2} + 0.8888 \times e^{-(0)^2} + 0.555 \times e^{-(0.33998)^2}.$

Another example

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhD

Example

Apply the 2 and 3 points Gaussian numerical integration formula to obtain an approximation $I_n(f)$ for $I = \int\limits_{-1}^1 e^{-x^2} dx$. Use the nodes and weights provided in Table.

Proof.

$$I_2(f) = 1 \times e^{-(-0.57735)^2} + 1 \times e^{-(0.57735)^2}.$$

 $I_3(f) = 0.555 \times e^{-(-0.33998)^2} + 0.8888 \times e^{-(0)^2} + 0.555 \times e^{-(0.33998)^2}.$

Designing Quadrature Rules

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhE

Example

Find c_1 , and c_2 in the following quadrature formula:

$$\int_{1}^{2} f(x)dx \approx c_{1}f(1) + c_{2}f(2) = \tilde{I}(f).$$

so that is exact for all polynomials of the largest degree possible. What is the degree of precision for this formula?

Designing Quadrature Rules

Numerical Analysis: Gaussian Numerical Integration

Natasha S. Sharma, PhD

Proof.

$$f(x) = 1$$
, $\Longrightarrow \tilde{I}(f) = c_1 + c_2$, $I(f) = \int_1^2 1 \ dx = 1$.

$$f(x) = x$$
, $\implies \tilde{I}(f) = c_1 + 2c_2$, $I(f) = \int_1^2 x \ dx = 3/2$.

For the integration rule to be exact for f(x) = 1, $c_1 + c_2 = 1$. Similarly, $c_1 + 2c_2 = 3/2$.

This means that $c_1 = c_2 = 1/2$.

DoP:

For
$$f(x) = x^2$$
, $\implies \tilde{I}(f) = c_1 + 4c_2 = 1/2 + 4/2 = 5/2$,

while
$$I(f) = \int_{1}^{2} x^{2} dx = 7/3$$
.

Hence,
$$\tilde{I}(f) \neq I(f)$$
 for $f(x) = x^2$. Therefore DoP is 1.