

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, PhD

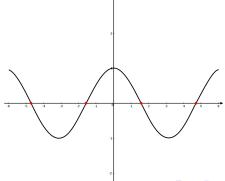
Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, PhD

Mathematical question we are interested in numerically answering

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phi ■ How to find the x-intercepts of a function f(x)? These x-intercepts are called the roots of the equation f(x) = 0. Notation: denote the exact root by α . That means, $f(\alpha) = 0$.



Basic Idea Behind Newton's Method

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Ph[Given x_0 , x_1 is the x-intercept of the tangent line at $(x_0, f(x_0))$.

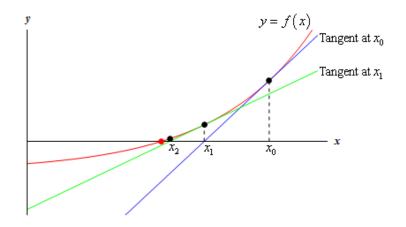


Figure : Linearization of f(x) about x_0 , x_1 and x_2 respectively.

Newton's Method

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phl Tangent Line at $(x_0, f(x_0))$:

$$y(x) = f(x_0) + f'(x_0)(x - x_0).$$

We obtain the next iterate x_1 as the x-intercept of the tangent line that is

$$f(x_0) + f'(x_0)(x_1 - x_0) = 0.$$

This simplifies to

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Generalizing, we can generate a sequence $\{x_n\}_{n\geq 1}$ where

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \cdots$$

Newton's Method

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phi Let x_0 be an initial guess. Let $\varepsilon > 0$ denote the given error tolerance and max_iteration denote the permissible number of iterations.

If $|f(x_0)| \le \varepsilon$, then accept x_0 as the root and stop.

Otherwise, define $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ and,

For $k = 1, 2, 3 \cdots, max_{iteration}$ do

N1 If $|f(x_k)| \le \varepsilon$ and $|x_k - x_{k-1}| < \varepsilon$ then accept x_k as the root and stop.

N2 Define $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$.

N3 Return to N1.

See the code Newton.m.

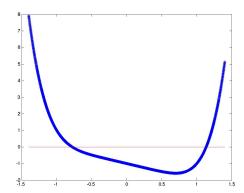
Example

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phl Find the largest root of

$$f(x) = x^6 - x - 1 = 0$$

accurate within $\varepsilon = 1e - 8$ using Newton's Method.



Solution

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phl Note $\alpha \approx 1.134724138$.

Solution: The sequence of iterates $\{x_n\}_{n\geq 1}$ is generated according to the formula:

for all $n = 0, 1, 2, \cdots$

$$x_{n+1} = x_n - \left(\frac{x_n^6 - x_n - 1}{6x_n^5 - 1}\right),$$

$$= x_n \left(\frac{6x_n^5 - 1}{6x_n^5 - 1}\right) - \left(\frac{x_n^6 - x_n - 1}{6x_n^5 - 1}\right)$$

$$= \frac{6x_n^6 - x_n - \left(x_n^6 - x_n - 1\right)}{6x_n^5 - 1}$$

$$= \frac{5x_n^6 + 1}{6x_n^5 - 1}.$$

Performance of the Newton's Method

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Ph

n	X _n	$f(x_n)$	$x_n - x_{n-1}$	$\alpha - x_{n-1}$
0	1.50	8.89e+1	_	_
1	1.30049088	2.5e+1	-2e-1	-3.65e-1
2	1.18148042	5.38e-1	-1.19e-1	-1.66e-1
3	1.13945559	4.92e-2	-4.2e-2	-4.68e-3
4	1.13477763	5.5e-4	-4.68e-3	-4.73e-3
5	1.13472415	7.11e-8	-5.35e-5	-5.35e-5
6	1.13472414	1.55e-15	-6.91e-9	-6.91e-9
:	:	:	:	:
α	1.134724138			

Remarks

1 May converge slowly at first. However, as the iterates come closer to the root, the speed of convergence increases.

Another Example

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, PhI Using Newton's Method solve the following equation

$$f(x) \equiv x^3 - 3x^2 + 3x - 1 = 0$$

with an accuracy of $\varepsilon = 10^{-6}$.

Simplified form of Newton's Method:

$$x_{n+1} = \frac{2x_n^3 - x_n^2 + 1}{3(x_n - 1)^2},$$

with initial guess $x_0 = 0.5$.

Application I: Computing $a^{1/m}$

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phi Compute $\sqrt{2}$ using only Newton's Method and '+,-,*,/'.

Solution: Find x such that $x^2 = 2$. Equivalently, find x satisfying

$$f(x) := x^2 - 2 = 0$$

Newton's Method: Start with initial guess $x_0 = 1$, compute x_1 using

$$x_1 = x_0 - \frac{(x_0^2 - 2)}{2x_0} = 1.5$$

 $x_2 = 1.4166, x_3 = 1.4142, x_4 = 1.4142.$

Application II: Division Operation

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phl Replace the division operation in early computers. These early computers only allowed addition, subtraction and multiplication.

Compute $\frac{1}{b}$ using Newton's Method and the operations +, -, *.

Solution: Find x such that $x = \frac{1}{b}$. Equivalently, find x satisfying

$$f(x) := b - x^{-1} = 0$$

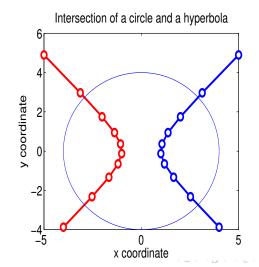
Newton's Method: Start with initial guess x_0 , compute x_1 using

$$x_1 = x_0(2 - bx_0).$$

Application III: Root finding in any dimension

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phl **Example:** Finding the intersection of a hyperbola and a circle.



Error Analysis

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S Sharma, Ph Assume that f(x) has atleast continuous derivatives of order 2 for all x in some interval containing α and $f''(\alpha) \neq 0$.

$$\alpha - x_{n+1} = (\alpha - x_n)^2 \left[\frac{-f''(c_n)}{2f'(x_n)} \right].$$

Error in x_{n+1} is nearly proportional to the square of the error in x_n .

The term $\frac{-f''(c_n)}{2f'(x_n)}$ is the amplification factor. However, it depends on n. We need to make this factor independent of n. This can be achieved in the following manner:

$$\frac{-f''(c_n)}{2f'(x_n)} \approx \frac{-f''(\alpha)}{2f'(\alpha)} = M.$$

$$M = \max_{x \in [a,b]} \frac{-f''(x)}{2f'(x)}.$$

Error Analysis

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phl Initial guess is crucial here and determine the number of iterations needed to achieve the desired accuracy! For our worked out example,

$$\frac{-f''(c_n)}{2f'(x_n)} \approx \frac{-f''(\alpha)}{2f'(\alpha)} \approx -2.42.$$

$$\alpha - x_{n+1} \approx -2.42(\alpha - x_n)^2$$

Determining x_0 without using Bisection Method

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, PhE

$$\alpha - x_{n+1} = (\alpha - x_n)^2 \left[\frac{-f''(c_n)}{2f'(x_n)} \right]$$
$$\approx (\alpha - x_n)^2 \underbrace{\left[\frac{-f''(\alpha)}{2f'(\alpha)} \right]}_{M}$$

Multiplying both sides with *M*

$$M(\alpha - x_{n+1}) \approx M^2(\alpha - x_n)^2$$

$$\begin{split} M(\alpha-x_2) &\approx M^2(\alpha-x_1)^2 \approx M^2\Big(M^2(\alpha-x_0)^4\Big) \\ &= \Big(M(\alpha-x_0)\Big)^{2^2}. \end{split}$$

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, PhD

$$|M(\alpha-x_0)|<1 \implies |\alpha-x_0|<\frac{1}{|M|}$$

By picking
$$x_0$$

$$-1 < \frac{1/b - x_0}{1/b} < 1$$
$$-1 < \frac{1 - bx_0}{1} < 1$$
$$0 < bx_0 < 2$$

Order of Convergence

Math 4329: Numerical Analysis Chapter 03: Newton's Method

Natasha S. Sharma, Phi

A sequence
$$\{x_n\}_{n\geq 0}$$
 converges to α with order $p\geq 1$ if $|\alpha-x_{n+1}|\leq c|\alpha-x_n|^p,\ n\geq 0$

for some $c \ge 0$

- p = 1 and c < 1 linear convergence (Bisection Method),
- p = 2 quadratic convergence (Newton's Method),
- p = 3 cubic convergence (some fixed point iterative methods).