Section 9.8

Definition of Power Series: If x is a variable, then an infinite series of the form
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is called a power series. More generally, an infinite series of the form
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is called a power series centered at ¢, where c is a constant.

Convergence of a Power Series: For a power series centered at c, precisely one of the following is true.

1. The series converges only at x = c.

2. There exists a real number R > 0 such that the series converges absolutely for |x — ¢|] < R, and
diverges for |x — c| > R.

3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the series converges only at ¢, the
radius of convergence is R = 0, and if the series converges for all x, the radius of convergence is

R = oo. The set of all values of x for which the power series converges is the interval of
convergence of the power series.

1) Find the radius of convergence for the power series.
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2) Find the radius of convergence for the power series.
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3) Find the radius of convergence for the power series.
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4) Find the interval of convergence for the power series.
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5) Find the interval of convergence for the power series.
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6) Let
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Write out the first six terms of this power series, and show that f"'(x) = —f(x). Which
function might this power series represent?

Homework for 9.8: #7, 15, 19, 21, 29, 30, 43, 47, 59



