Section 9.1

Definition: A sequence is defined as a function whose domain is the set of positive integers.
The Limit of a Sequence: Let L be a real number. Let f be a function of a real variable such that

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

If $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n. Then

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

Squeeze Theorem for Sequences: If

$$
\lim _{n \rightarrow \infty} a_{n}=L=\lim _{n \rightarrow \infty} b_{n}
$$

and there exists an integer N such that $a_{n} \leq c_{n} \leq b_{n}$ for all $n>N$, then

$$
\lim _{n \rightarrow \infty} c_{n}=L
$$

Absolute Value Theorem: For the sequence $\left\{a_{n}\right\}$, if

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \text { then } \lim _{n \rightarrow \infty} a_{n}=0
$$

Definition of Monotonic Sequence: A sequence $\left\{a_{n}\right\}$ is monotonic if its terms are nondecreasing

$$
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots
$$

or if its terms are nonincreasing

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots
$$

Definition of Bounded Sequence:

1. A sequence $\left\{a_{n}\right\}$ is bounded above if there is a real number M such that $a_{n} \leq M$ for all n. The number M is called an upper bound of the sequence.
2. A sequence $\left\{a_{n}\right\}$ is bounded below if there is a real number N such that $N \leq a_{n}$ for all n. The number N is called an lower bound of the sequence.
3. A sequence $\left\{a_{n}\right\}$ is bounded if it is bounded above and bounded below.

Bounded Montonic Sequences: If a sequence $\left\{a_{n}\right\}$ is bounded and monotonic, then it converges.

1) List the terms of the following sequences:
a) $\left\{a_{n}\right\}=\left\{\frac{n-1}{n+1}\right\}$
b) $\left\{b_{n}\right\}=\left\{(-1)^{n+1}\left(\frac{n-1}{n}\right)\right\}$
c) The recursively defined sequence $\left\{c_{n}\right\}$, where $c_{1}=2$ and $c_{n+1}=2 c_{n}+1$.
2) If possible, find

$$
\lim _{n \rightarrow \infty} \frac{3 n}{\sqrt{n^{2}-2}}
$$

3) Determine whether the following sequences converge or diverge.
a) $\left\{a_{n}\right\}=\left\{n+(-1)^{n}\right\}$
b) $\left\{b_{n}\right\}=\left\{\frac{3 n^{3}}{3^{n}+3}\right\}$
4) Use the Squeeze Theorem to show that the sequence $\left\{a_{n}\right\}=\left\{\frac{\cos \pi n}{n^{2}}\right\}$ converges.
5) Find a sequence $\left\{a_{n}\right\}$ whose first five terms are

$$
\frac{2}{3}, \frac{4}{9}, \frac{6}{27}, \frac{8}{81}, \frac{10}{243}, \ldots
$$

and determine whether the sequence you have chosen converges or diverges.
6) Determine an nth term for the sequence whose first six terms are

$$
-\frac{2}{3}, \frac{3}{5},-\frac{4}{9}, \frac{5}{17},-\frac{6}{33}, \ldots
$$

and then decide whether the sequence converges or diverges.
7) Determine whether the sequence with the nth term $a_{n}=\frac{4 n}{n+3}$ is monotonic. Discuss the boundedness of the sequence.

