Section 7.5

Definition of Work Done by a Constant Force: If an object is moved a distance D in the direction of an applied constant force F, then the work W done by the force is defined as $W=F D$.

Units for Work: In the U.S. system, work is measured in foot-pounds, inch-pounds, or foot-tons. In the metric system, work is measure in ergs or joules.

Definition of Work Done by a Variable Force: If an object is moved along a straight line by a continuously varying force $F(x)$, then the work W done by the force as the object is moved from $x=a$ to $x=b$ is

$$
W=\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} \Delta W_{i}=\int_{a}^{b} F(x) d x .
$$

Hooke's Law: The force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is,

$$
F=k d
$$

where the constant of proportionality k (the spring constant) depends on the specific nature of the spring.

Newton's Law of Universal Gravitation: The force F of attraction between two particles of masses m_{1} and m_{2} is proportional to the product of the masses and inversely proportional to the square of the distance d between the two particles. That is,

$$
F=k \frac{m_{1} m_{2}}{d^{2}}
$$

If m_{1} and m_{2} are given in grams and d in centimeters, F will be in dynes for a values of $k=6.670 \times 10^{-8}$ cubic centimeters per gram-second squared.

Coulomb's Law: The force F between two charges q_{1} and q_{2} in a vacuum is proportional to the product of the charges and inversely proportional to the square of the distance between the two charges. That is,

$$
F=k \frac{q_{1} q_{2}}{d^{2}}
$$

If q_{1} and q_{2} are given in electrostatic units and d in centimeters, F will be in dynes for a value of $k=1$.

1) A force of 30 pounds compresses a spring 5 inches from its natural length of 20 inches.
a) Find the amount of work required to compress the spring 8 inches.
b) Find the amount of work required to compress the spring from 8 inches to 10 inches.
2) Assume the radius of Earth is 4000 miles. Determine the work done in propelling a 5 ton satellite to a height of
a) 100 miles above the surface of Earth.
b) 300 miles above the surface of Earth.
3) Mercury is held in a circular cylinder with radius 2 feet and height 5 feet. If there are 4 feet of mercury in the container, calculate the work required to remove all of it. The density of mercury is 844 pounds per cubic foot.
4) A 10 foot chain weighing 10 pounds per foot is lying on the ground. How much work is required to raise one end of the chain to a height of 10 feet (so that it is fully extended)?
