In addition to the in-class questions, homework and worksheet questions here are some additional problems:

1. Section 3.2: \# 4
2. Section 3.4: \# 8, \# 9
3. Section 4.1: \# 7, \# 8, \# 24, \# 25, \# 28
4. Section 4.3: \# 10, \# 14, \#15, \#16
5. Consider the following rootfinding methods to approximate $\alpha=5^{1 / 3}$.
(a) Write out the iteration formula for the Secant Method applied to the equation $x^{3}-5=0$ to find α. Simplify the formula as much as possible.

Solution:

$$
x_{n+1}=\frac{x_{n}^{2} x_{n-1}+x_{n} x_{n-1}^{2}+5}{x_{n}^{2}+x_{n-1} x_{n}+x_{n-1}^{2}}
$$

Intermediate Steps:

$$
\begin{aligned}
x_{n+1} & =x_{n}-\left(x_{n}^{3}-5\right) \frac{x_{n}-x_{n-1}^{3}}{x_{n}^{3}-x_{n-1}^{3}} \\
& =x_{n}-\frac{\left(x_{n}^{3}-5\right)\left(x_{n}-x_{n-1}\right)}{\left(x_{n}-x_{n-1}\right)\left(x_{n}^{2}+x_{n} x_{n-1}+x_{n-1}^{2}\right)} \\
& =x_{n}-\frac{x_{n}^{3}-5}{x_{n}^{2}+x_{n} x_{n-1}+x_{n-1}^{2}} \\
& =\frac{x_{n}\left(x_{n}^{2}+x_{n} x_{n-1}+x_{n-1}^{2}\right)-\left(x_{n}^{3}-5\right)}{x_{n}^{2}+x_{n} x_{n-1}+x_{n-1}^{2}}
\end{aligned}
$$

(b) Consider the fixed point iteration

$$
x_{n+1}=x_{n}+c\left(x_{n}^{3}-5\right)
$$

Find the values of c to ensure the convergence of the iterations generated by the above formula provided x_{0} is chosen sufficiently close to α.
Solution: $-1<g^{\prime}(\alpha)<1$ amounts to

$$
\begin{array}{r}
-1<1+3 c \alpha^{2}<1 \\
\frac{-2}{3 \alpha^{2}}<c<0 .
\end{array}
$$

6. Consider the data $\{(1,1),(2,2),(3,5)\}$.
(a) Use Newton's divided difference formula to find the quadratic polynomial $p_{2}(x)$ that interpolates the above data. Find the expression in the simplest form.
Solution: You should get the polynomial $p_{2}(x)=x^{2}-2 x+2$
(b) Use Lagrange's formula to find $p_{2}(x)$ and show that you got the same result as in (a).

Useful Tip: We know that the polynomial of degree 2 passing through 3 points $\{(1,1),(2,2),(3,5)\}$ will always be unique so if the polynomial you obtained passes through the three given points that means it is the right one.
7. Determine the values of a, b, and c so that the following is a cubic spline function on $[0,3]$.

$$
s(x)= \begin{cases}x^{3} & \text { if } 0 \leq x \leq 2 \\ -0.5(x-1)^{3}+a(x-1)^{2}+b(x-1)+c & \text { if } 2 \leq x \leq 3\end{cases}
$$

Solution: $\mathrm{a}=7.5, \mathrm{~b}=-1.5, \mathrm{c}=2.5$.

Useful Tip: Check you answer by plugging in the values of a, b, c into the three equations obtained.

