Name: \qquad
Student ID \#: \qquad
Class Time: \qquad

1. Consider the following linear system:

$$
\begin{aligned}
x+y & =0 \\
x+\frac{401}{400} y & =20
\end{aligned}
$$

(a) Obtain the solution by a direct inversion of the coefficient matrix and assuming that we are using a computer with five significant digits. Verify that the solution obtained is the exact solution $\mathbf{x}^{*}=[-8000,8000]^{T}$.
(b) Compare the above exact solution to one obtained on a computer with four digits of significance.
(c) Compare the above exact solution to one obtained on a computer with three digits of significance. Please remark on the existence of the solution.
Hint: The columns are multiples of each other.
2. Consider the following linear system:

$$
\begin{array}{r}
x-\frac{800}{801} y=10 \\
-x+y=50
\end{array}
$$

(a) Verify that the exact solution is $\mathbf{x}^{*}=[48010,48060]^{T}$.
(b) Obtain the solution by a direct inversion of the coefficient matrix and assuming that we are using a computer with eight significant digits, compare it with the exact solution \mathbf{x}^{*}.
(c) Compare the solution to one obtained on a computer with four digits of significance and with three digits of significance. Remark on how large the error is for both these cases.
3. Solve the following linear system:

$$
\begin{aligned}
x+y & =2 \\
x+1.0001 y & =2+\alpha .
\end{aligned}
$$

Here the number α assumes the following three values: $0,10^{-3}$ and 10^{-4}. Can you explain the significant difference in the solutions ?

Solution:

$\alpha=0 ; \quad x=2 ; \quad y=0$.
$\alpha=10^{-3} ; \quad x=0.999999999996362 ; \quad y=1.000000000003638$, $\alpha=10^{-4} ; \quad x=1.899999999997817 ; \quad y=0.100000000002183$.

