Math 4329 MATRIX ARITHMETIC

Name:
Student ID #:
Class Time:

1. Compute the inverse of the Hilbert Matrix of order 2, 3, 4.

- **2.** Transpose of a matrix A is A^T obtained by interchanging the rows and the columns of A.
 - (a) Find out all the numeric entries of A satisfying the following:

$$A = \begin{bmatrix} a & b & 1 \\ 2 & c & d \end{bmatrix} = \begin{bmatrix} 5 & 6 & 1 \\ 2 & 2 & a+1 \end{bmatrix}$$

(b) What is the transpose of A i.e., A^T ?

(c) What is the inverse of A?

(d) Find out $A*A^T$ and A^T*A .

3. Let

$$A = \begin{bmatrix} 2 & 3 & 2 \\ -1 & 2 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 6 & 3 \\ 2 & -1 & 2 & 4 \\ 3 & 1 & 12 & 7 \end{bmatrix}.$$

• Compute A*B, A*C.

provide the reason.

• Is it possible to compute B*A, C*A as well? If yes, please compute it. If not, please

4. Let

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3/4 & -1/2 & 1/4 \\ -1/2 & 1 & -1/2 \\ 1/4 & -1/2 & 3/4 \end{bmatrix}$$

(a) Using Gaussian Elimination, find the inverse of A.

(b) Verify that it is B by computing A*B and B*A.

5. Simplify the following matrix expressions to obtain a single matrix:

(a)
$$2\begin{bmatrix} 1 & 0 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} * \begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix}$$

(b)
$$A = I_3 - 2x * x^T$$
, $x^T = [1/3, 2/3, 2/3]$, $B = A^2$.

6. Solve the system below:

$$4x_1 + 3x_2 + 2x_3 + x_4 = 1$$
$$3x_1 + 4x_2 + 3x_3 + 2x_4 = 1$$
$$2x_1 + 3x_2 + 4x_3 + 3x_4 = -1$$
$$x_1 + 2x_2 + 3x_3 + 4x_4 = -1$$

by converting it to the form Ax = b and using Gaussian Elimination. Give a count of the number of mathematical operations involved at each step.

7.	List the	following	statements	as t	true or	false.	If false	give	an	example	to	support	your
	answer.												

(a) If A is invertible then $\det(A) \neq 0$.

(b) $\det(AB) = \det(A)\det(B)$.

(c) A is a 3×4 matrix does its inverse exist ?

(d) $\det(\mathbf{A}) = \det(\mathbf{A}^T)$