Name: \qquad

Number	Max Possible	Points
1	20	
2	18	
3	20	
4	18	
5	16	
6	18	
7	20	
8	150	
Total	50	
EXTRA CREDIT		
4		

1. (20 pts) (Quadrature Rules)

(a) Find c_{1} and c_{2} in the following quadrature formula:

$$
\int_{0}^{1} f(x) d x \approx c_{1} f(0)+c_{2} f(1)
$$

so that is exact for all polynomials of the largest degree possible. What is the degree of precision for this formula ?
(b) i. Approximate $\int_{-1}^{1} x^{4} d x$ using the two point Gaussian quadrature rule with nodes $\pm 3^{-1 / 2}$ and weights 1 .
ii. Calculate the exact integral $\int_{-1}^{1} x^{4} d x$ and compare the error between the true value and the approximation obtained in (i).

2. (18 pts) (Rootfinding techniques)

(a) Consider the equation $e^{-x}=\sin (x)$. Find the interval $[a, b]$ containing the smallest positive root α. Estimate the number n of midpoints c_{n} needed to obtain an approximate root that is accurate within an error tolerance of 10^{-9}.
You may use the formula $\left|\alpha-c_{n}\right| \leq \frac{b-a}{2^{n}}$.
(b) Consider the fixed point iteration

$$
x_{n+1}=2-(1+c) x_{n}+c x_{n}^{3} .
$$

Find the values of c to ensure the convergence of the iterations generated by the above formula to α provided x_{0} is chosen sufficiently close to the actual root $\alpha=1$.
3. (20 pts) Gaussian Elimination
(a) Use Gaussian elimination with back substitution to solve the system:

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =4 \\
3 x_{1}+4 x_{2}+x_{3} & =6 \\
2 x_{1}+5 x_{2}+7 x_{3} & =2
\end{aligned}
$$

Please specify the multipliers m_{21}, m_{31} and m_{32}.
(b) Use the multipliers from the previous part (b) to form the LU factorization of the coefficient matrix of the linear system.
4. (18 pts) Consider the data $\{(-1,2),(0,1),(1,1)\}$.
(a) Use Newton's divided difference formula to find the quadratic polynomial $p_{2}(x)$ that interpolates the above data. Find the expression in the simplest form.
(b) Use Lagrange's formula to find $p_{2}(x)$ and show that you got the same result as in (a).
5. (16 pts) Consider the roots of the quadratic equation $x^{2}+b x+1=0$ which can be expressed as

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4}}{2}, \quad x_{2}=\frac{-b-\sqrt{b^{2}-4}}{2} .
$$

(a) Assume that b^{2} is much larger than 4, which root will suffer from the loss-ofsignifincance errors and why ?
(b) Rewrite the expression for that specific root to avoid the loss-of-significance error.
6. (15 pts) Consider the following table:

x	$f(x)$
0.3	7.3891
0.4	7.4633
0.5	7.5383
0.6	7.6141
0.7	7.6906

where $x_{i+1}=x_{i}+h, \quad i=0,1, \ldots, 3$..
(a) Approximate $f^{\prime}(0.5)$ using $D_{h}^{+} f(0.5)$ and $h=0.1$.
(b) Compute $D_{h}^{(2)} f(0.5)$ using the Central Difference Formula and step size $h=0.2$. Note: You may use the following formula for Central Difference Formula:

$$
D_{h}^{(2)} f\left(x_{1}\right)=\frac{D_{h}^{+} f\left(x_{1}\right)-D_{h}^{-} f\left(x_{1}\right)}{h}
$$

(c) Compare the answer from (b) with the following approximation :

$$
D_{h}^{(2)} f\left(x_{1}\right)=\frac{f\left(x_{2}\right)-2 f\left(x_{1}\right)+f\left(x_{0}\right)}{h^{2}}
$$

with $x_{1}=0.5, h=0.2$.
7. (10 pts) This question is related to floating-point numbers.
(a) Determine the number x that has the following binary format:
$(11111111101)_{2}$
(b) Furthermore, recall the double precision representation for any number y is

$$
y=\sigma \cdot\left(1 . a_{1} a_{2} a_{3} \cdots a_{52}\right) \cdot 2^{E-1023}, \text { where } E=\left(c_{1} c_{2} c_{3} \cdots c_{11}\right)_{2} .
$$

Please express the number x obtained above in its double precision representation.
8. (20 pts) Consider the Jacobi and Gauss Seidel methods applied to solve the following system:

$$
\begin{aligned}
4 x_{1}+3 x_{2} & =7 \\
x_{1}+3 x_{2} & =4
\end{aligned}
$$

Compute $\mathbf{x}_{J}^{(k)}, \mathbf{x}_{G S}^{(k)}$ for $k=1,2$ with initial guess $\mathbf{x}^{(0)}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Do we have convergence ?

EXTRA CREDIT

TBA

