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!Jjectives

B Understand the definition of a power series.

B Find the radius and interval of convergence of a power
series.

B Determine the endpoint convergence of a power series.

B Differentiate and integrate a power series.



Power Series



!)wer Series

An important function f(x) = excan be represented exactly
by an infinite series called a power series. For example,

the power series representation for ex s
-2 .3 -
2' n!
For each real number X, |t can be shown that the infinite
series on the right converges to the number ex.

Definition of Power Series

If x is a variable, then an infinite series of the form
= 2
2 ax"=ay+ax+ax*+tax>+---+ax"+---
n=>0

is called a power series. More generally, an infinite series of the form

O
Yax—cr=ata—c+tax—cf+---+a—cr+- -
n=0

is called a power series centered at ¢, where ¢ is a constant.



!ample 1 — Power Series

a. The following power series is centered at O.

o0y x2 X3
Y m=ltx+ T+ 5+
oy ! 2 3!

n=

b. The following power series is centered at —1.

O

D+ =1-@+D+x+1)2—x+ 13+

n=1_0

c. The following power series is centered at 1.

NI I ST SR
El;(x—l)Z(x—l)—FE(x—l)+3(x 1) +

n=



Radius and Interval of
Convergence



!dius and Interval of Convergence

A power series in x can be viewed as a function of x
fx) = ax—c)
n=10

where the domain of f is the set of all x for which the
power series converges. Of course, every power series
converges at its center ¢ because

ﬂﬂzzﬁﬁ—w

—a()+0+04---+0+- - -



!dius and Interval of Convergence

So, ¢ always lies in the domain of f. Theorem 9.20 (to
follow) states that the domain of a power series can take
three basic forms: a single point, an interval centered at c,
or the entire real number line, as shown in Figure 9.17.

A single point

L
c

An interval

The real number line
I .
-

The domain of a power series has only three
basic forms: a single point, an interval centered
at ¢, or the entire real number line.

Figure 9.17



jdius and Interval of Convergence

THEOREM 9.20 Convergence of a Power Series

For a power series centered at ¢, precisely one of the following is true.

1. The series converges only at c.

2. There exists a real number R > 0 such that the series converges absolutely
for

fie— g| vl
and diverges for
Iy — | =B
3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the series
converges only at ¢, then the radius of convergence is R = 0. If the series
converges for all x, then the radius of convergence is R = oo. The set of all
values of x for which the power series converges is the interval of convergence
of the power series.
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Smple 2 — Finding the Radius of Convergence

Find the radius of convergence of ZO nlx”.
Solution:
For x = 0, you obtain

fO=Yn0r=1+0+0+---=1.

n=>0

For any fixed value of x such that |x| > O, let u, = nlxn.

Then (Fl + 1)!xn+l

nlx"

Mn—l—l

M?l

= Iim
n—aco

Iim
1n—co

= |x| lim (n + 1)

n—oo

— OO,

11



!ample 2 — Solution

Therefore, by the Ratio Test, the series diverges for |x| > 0
and converges only at its center, O.

cont'd

So, the radius of convergence is R = 0.
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Endpoint Convergence
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!\dpoint Convergence

For a power series whose radius of convergence is a finite
number R, Theorem 9.20 says nothing about the
convergence at the endpoints of the interval of
convergence.

Each endpoint must be tested separately for convergence
or divergence.
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g\dpoint Convergence

As a result, the interval of convergence of a power series
can take any one of the six forms shown in Figure 9.18.
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Intervals of convergence

Figure 9.18

15



Smple 5 — Finding the Interval of Convergence

@8] x?l
Find the interval of convergence of 2

n=1 n

Solution:
Letting u, = xn/n produces

xn—l— |

_|_
= lim |22

n—oo xn

un—|—l

uﬂ

lim

n—oco

n

= Iim
n—oco

nx
n—+1

= |xl.



!ample 5 — Solution o

So, by the Ratio Test, the radius of convergence is R = 1.

Moreover, because the series is centered at O, it converges
In the interval (-1, 1).

This interval, however, is not necessarily the interval of
convergence.

To determine this, you must test for convergence at each
endpoint.

When x = 1, you obtain the divergent harmonic series

=1 1 1 1 |
E —=T+5+§+' SR Diverges when x = 1
n=ln
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!ample 5 — Solution

When x = -1, you obtain the convergent alternating
harmonic series

cont'd

i 1 + I + ! C h |
— —~ — T, onverges wnen x = —
= n 2 3 4

So, the interval of convergence for the series is [-1, 1), as
shown in Figure 9.19.

Interval: [-1, 1)
Radius: R =1

-

[ .
—1 c=0

Figure 9.19
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Differentiation and Integration of
Power Series
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erentiation and Integration of Power Series

THEOREM 9.21 Properties of Functions Defined by Power Series
If the function

o) =3 adx - oy

n=0
=gy +alx—c)l+alx—cl+ailx—cP+---

has a radius of convergence of R > 0, then, on the interval
{c —R.c+R)

f1s differentiable (and therefore continuous). Moreover, the derivative and
antiderivative of f are as follows.

1. fix) = ED: na(x — ¢y !
n=1
=ay+2ax—c)+3alx—cP+- -
e &, o
2. ff[x] dx=C + ana” = 3
(x — c)f iy (x — )

2 27 3

i

=C + ay(x — ¢) + a,

The radius of convergence of the series obtained by differentiating or integrating
a power series 1s the same as that of the original power series. The interval of
convergence, however, may differ as a result of the behavior at the endpoints.
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Sple 8 — Intervals of Convergence for f(x), f'(x), and [f(x)dx

Consider the function given by
n x2 x3

Xy : .
V) — I M E A
f(x) ,Z‘ln ¥+ 5+ 3

Find the interval of convergence for each of the following.

a. [f(x)dx
b. f(x)
c. F(x)
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!ample 8 — Solution

By Theorem 9.21, you have
]C,(X) — 2 x|

n=1

=l +x+x*+x+- -

and

v+ 1

ff(x)dx=C+ i o

“~ nn+1)

2 3

X X
_I_
-2 2-

By the Ratio Test, you can show that each series has a

radius of convergence of R = 1.

Considering the interval (-1, 1) you have the following.

3

_|_

3

X

4

. 4

-+ -

cont'd
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jample 8(a) — Solution

For [f(x)dx, the series

cont'd

n—+1

S X
Interval of convergence: [—1, 1]
RZI nin + 1)

converges for x = £1, and its interval of convergence is
[-1, 1]. See Figure 9.21(a).

Interval: [-1, 1]

Radius: R=1
[ | ] p
—1 c=0 1

Figure 9.21(a) 23



jample 8(b) — Solution

For f(x), the series

@) xn
2 — Interval of convergence: [—1,1)
n=1 n

converges for x = -1, and diverges for x = 1.
So, its interval of convergence is [-1, 1).

See Figure 9.21(b).
Interval: [-1, 1)

Radius: R=1
[ | \ _
[ | ] *
—1 c=0 1

Figure 9.21(b)

cont'd
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jample 8(c) — Solution

For f(x), the series

cont'd

E xn— 1 Interval of convergence: (— 1, 1)
n=1

diverges for x = £1, and its interval of convergence is (-1, 1).
See Figure 9.21(c).

Interval: (=1, 1)

Radius: R =1
[ | \ _
) | ] A
—1 c=0 |
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Figure 9.21(c)
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