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 List the terms of a sequence.

 Determine whether a sequence converges or diverges.

 Write a formula for the nth term of a sequence.

 Use properties of monotonic sequences and bounded 
sequences.

Objectives
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Sequences
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Sequences

A sequence is defined as a function whose domain is the 
set of positive integers. Although a sequence is a function, 
it is common to represent sequences by subscript notation 
rather than by the standard function notation. For instance, 
in the sequence

1 is mapped onto a1, 2 is mapped onto a2, and so on. The 
numbers a1, a2, a3, . . ., an, . . . are the terms of the 
sequence. The number an is the nth term of the sequence, 
and the entire sequence is denoted by {an}.
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Example 1 – Listing the Terms of a Sequence

a. The terms of the sequence {an} = {3 + (–1)n} are

     3 + (–1)1, 3 + (–1)2, 3 + (–1)3, 3 + (–1)4, . . .

      2,             4,            2,            4,     . . . .

b. The terms of the sequence {bn}                    are
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Example 1 – Listing the Terms of a Sequence

c. The terms of the sequence {cn}                  are

     

d.  The terms of the recursively defined sequence {dn}, 
where d1 = 25 and dn + 1 = dn – 5, are

25, 25 – 5 = 20, 20 – 5 = 15, 15 – 5 = 10,. . . . .

cont’d
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Limit of a Sequence
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Limit of a Sequence

Sequences whose terms approach limiting values are said 
to converge. For instance, the sequence {1/2n}

converges to 0, as indicated in the following definition.
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Limit of a Sequence

Graphically, this definition says that eventually 

(for n > M and ε > 0) the terms of a sequence that 
converges to L will lie within the band between the lines 

y = L + ε and y = L – ε as shown in Figure 9.1.

If a sequence {an} agrees with a

function f at every positive integer,

and if f(x) approaches a

limit L as            the sequence must

converge to the same limit L.

Figure 9.1
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Limit of a Sequence
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Example 2 – Finding the Limit of a Sequence

Find the limit of the sequence whose nth term is

Solution:

You learned that

So, you can apply Theorem 9.1 to conclude that
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Limit of a Sequence

There are different ways in which a sequence can fail to 
have a limit. 

One way is that the terms of the sequence increase without 
bound or decrease without bound.

These cases are written symbolically, as shown below.



14

Limit of a Sequence
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Limit of a Sequence

The symbol n! (read “n factorial”) is used to simplify some 
of these formulas. Let n be a positive integer; then n 
factorial is defined as

      n! = 1 • 2 • 3 • 4 . . . (n – 1) • n.

As a special case, zero factorial is defined as 0! = 1.        
From this definition, you can see that 1! = 1, 2! = 1 • 2 = 2, 
3! = 1 • 2 • 3 = 6, and so on.
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Limit of a Sequence

Factorials follow the same conventions for order of operations 
as exponents. That is, just as 2x3 and (2x)3 

imply different order of operations, 2n! and (2n)! imply the orders

        2n! = 2(n!) = 2(1 • 2 • 3 • 4 • • • n)

and

       (2n)! = 1 • 2 • 3 • 4 • • • n • (n + 1) • • • 2n

respectively.
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Limit of a Sequence

Another useful limit theorem that can be rewritten for 
sequence is the Squeeze Theorem.
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Example 5 – Using the Squeeze Theorem

Show that the sequence                           converges, and 
find its limit.

Solution:

To apply the Squeeze Theorem, you must find two 
convergent sequences that can be related to the given 
sequence.

Two possibilities are an = –1/2n and bn = 1/2n, both of which 
converge to 0.

By comparing the term n! with 2n, you can see that,

n! = 1 • 2 • 3 • 4 • 5 • 6 . . . n = 

and

2n = 2 • 2 • 2 • 2 • 2 • 2 . . . 2 =
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Example 5 – Solution

This implies that for n ≥ 4, 2n < n!, and you have

as shown in Figure 9.2.

So, by the Squeeze Theorem

it follows that

Figure 9.2

cont’d
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Limit of a Sequence
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Pattern Recognition for Sequences
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Pattern Recognition for Sequences

Sometimes the terms of a sequence are generated by 
some rule that does not explicitly identify the nth term of the 
sequence.

In such cases, you may be required to discover a pattern in 
the sequence and to describe the nth term.

Once the nth term has been specified, you can investigate 
the convergence or divergence of the sequence.
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Example 6 – Finding the nth Term of a Sequence

Find a sequence {an} whose first five terms are

and then determine whether the particular sequence you 
have chosen converges or diverges.
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Example 6 – Solution

First, note that the numerators are successive powers of 2, 
and the denominators form the sequence of positive odd 
integers. 

By comparing an with n, you have the following pattern.
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Example 6 – Solution (cont.)

Consider the function of a real variable f(x) = 2x/(2x – 1). 
Applying L'Hôpital's Rule produces

Next, apply Theorem 9.1 to conclude that 

So, the sequence diverges.
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Monotonic Sequences and 
Bounded Sequences
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Monotonic Sequences and Bounded Sequences
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Example 8 – Determining Whether a Sequence Is Monotonic

Determine whether each sequence having the given nth 
term is monotonic.

Solution:

a. This sequence alternates between

     2 and 4. 

    So, it is not monotonic.

Figure 9.3(a)
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Example 8 – Solution

b. This sequence is monotonic because each successive  

    term is larger than its predecessor.

   To see this, compare the terms

    bn and bn + 1.

   [Note that, because n is positive,

   you can multiply each side of the

   inequality by (1 + n) and (2 + n)

   without reversing the

   inequality sign.]
Figure 9.3(b)

cont’d



30

Example 8 – Solution

Starting with the final inequality, which is valid, you can 
reverse the steps to conclude that the original inequality is 
also valid.

cont’d
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Example 8 – Solution

c. This sequence is not monotonic, because the second

    term is larger than the first term, and larger than the

    third.

    (Note that if you drop the first term,

    the remaining sequence c2, c3, c4, . . .

    is monotonic.)

cont’d

Figure 9.3(c)
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Monotonic Sequences and Bounded Sequences
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Monotonic Sequences and Bounded Sequences

One important property of the real numbers is that they are 
complete.  Informally this means that there are no holes or 
gaps on the real number line. (The set of rational numbers 
does not have the completeness property.)

The completeness axiom for real numbers can be used to 
conclude that if a sequence has an upper bound, it must 
have a least upper bound (an upper bound that is smaller 
than all other upper bounds for the sequence). 
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Monotonic Sequences and Bounded Sequences

For example, the least upper bound of the sequence 

{an} = {n/(n + 1)},

is 1. 
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Example 9 – Bounded and Monotonic Sequences

a. The sequence {an} = {1/n} is both bounded and 
monotonic and so, by Theorem 9.5, must converge.

b. The divergent sequence {bn} = {n2/(n + 1)} is monotonic, 
but not bounded. (It is bounded below.)

c. The divergent sequence {cn} = {(–1)n} is bounded, but 
not monotonic.
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