## CPS 5310: Parameter Estimation

Natasha Sharma, Ph.D.

## Example

Suppose our task is to determine the net income for year 2019 based on the net incomes given below

| Year | Net Income |
| :---: | :---: |
| 2016 | 48.3 million |
| 2017 | 90.4 million |
| 2018 | 249.9 million |

Last lecture we tried to answer this with
■ the use of a polynomial interpolating three points,

- least squares method
- using MATLAB's polyfit function


## Example

Suppose our task is to determine the net income for year 2019 based on the net incomes given below

| Year | Net Income |
| :---: | :---: |
| 2016 | 48.3 million |
| 2017 | 90.4 million |
| 2018 | 249.9 million |

Last lecture we tried to answer this with
■ the use of a polynomial interpolating three points,

- least squares method
- using MATLAB's polyfit function


## Example

Suppose our task is to determine the net income for year 2019 based on the net incomes given below

| Year | Net Income |
| :---: | :---: |
| 2016 | 48.3 million |
| 2017 | 90.4 million |
| 2018 | 249.9 million |

Last lecture we tried to answer this with

- the use of a polynomial interpolating three points,
- least squares method
- using MATLAB's polyfit function


## Summary of MATLAB commands

```
clear all; clf;
year=[0,1,2];
income=[48.3, 90.4, 249.9];
plot(year, income, 'ro')
```

For regression, we use
polyfit(year, income, N)

N is the degree of the polynomial used for curve fitting. The output represents the decreasing coefficients of the polynomial.
In the Figure 1, choose Tools, Basic Fitting.

| Year | Crime Rate | Unemployment |
| :---: | :---: | :---: |
| 1994 | 5373.5 | $6.1 \%$ |
| 1995 | 5277.6 | $5.6 \%$ |
| 1996 | 5086.6 | $5.4 \%$ |
| 1997 | 4922.7 | $4.9 \%$ |
| 1998 | 4619.3 | $4.5 \%$ |
| 1999 | 4266.8 | $4.2 \%$ |
| 2000 | 4124.8 | $4 \%$ |
| 2001 | 4160.5 | $4.8 \%$ |

## Summary of MATLAB commands

```
clear all; clf;
scatterplot(X);
```

Generate the best fit curves for crime-unemployment data

## Regression with more general functions

CPS 5310:
Parameter
Estimation
Natasha
Sharma
Ph.D.

Consider the following unconstrained optimization problem

$$
\min _{p} E(p):=\sum_{j=1}^{k}\left|T_{j}-\sin \left(m_{j}-p\right)\right|^{2}
$$

Computing the optimality condition yields:

$$
2 \sum_{j=1}^{k}\left(T_{j}-\sin \left(m_{j}-p\right)\right) \cos \left(m_{j}-p\right)=0
$$

## Summary of MATLAB commands

CPS 5310:
Parameter Estimation

Natasha
Sharma,
Ph.D.

```
function value = bigbend(a);
scaledtemp=[-1, -0.71, ...-0.93];
value=0;
for j=1:12
m=2*pi*j/12;
value= value +
(scaledtemp(j)-sin(m-p))*cos(m-p);
end
```

Solving for $p$
months=1:12;
temps = [60.9 ...62.2];
p=fzero (@bigbend, 1)
modeltemps $=18 * \sin (2 * \mathrm{pi} *$ months $/ 12-\mathrm{p})+78.9$; plot (months, temps, 'o', months, modeltemps)

## Lotka-Volterra Prey-Predator Model

## Example

Consider the following model capturing the interaction of the species $x(t)$ and $y(t)$ :

$$
\begin{aligned}
& \frac{d x}{d t}=a x-b x y \\
& \frac{d y}{d t}=-r y+c x y
\end{aligned}
$$

where $a, b, c$ and $r$ are non-negative parameters.
Can you identify which species is the prey and which is the predator?

## Interaction between Lynx and Hare

Sharma,
Ph.D.

| Year | Lynx | Hare | Year | Lynx | Hare | Year | Lynx | Hare |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1900 | 4 | 30 | 1907 | 13 | 21.4 | 1914 | 45.7 | 52.3 |
| 1901 | 6.1 | 47.2 | 1908 | 8.3 | 22 | 1915 | 51.1 | 19.5 |
| 1902 | 9.8 | 70.2 | 1909 | 9.1 | 25.4 | 1916 | 29.7 | 11.2 |
| 1903 | 35.2 | 77.4 | 1910 | 7.4 | 27.1 | 1917 | 15.8 | 7.6 |
| 1904 | 59.4 | 36.3 | 1911 | 8 | 40.3 | 1918 | 9.7 | 14.6 |
| 1905 | 41.7 | 20.6 | 1912 | 12.3 | 57 | 1919 | 10.1 | 16.2 |
| 1906 | 19 | 18.1 | 1913 | 19.5 | 76.6 | 1920 | 8.6 | 24.7 |

Table: Number of pelts collected by the Hudson Bay Company (in 1000s).

Goal: Based on the data given, determine the parameters $a, b, r$ and $c$ without finding an exact solution to the model.

## Derivative Approximation Method

CPS 5310:
Parameter
Estimation

## Natasha

Sharma,
Ph.D.

The predator equation under the assumption that $y(t)$ is not zero can be expressed as

$$
\frac{1}{y} \frac{d y}{d t}=c x-r
$$

Treat " $\frac{1}{y} \frac{d y}{d t}$ as a single variable then $c$ and $r$ can be thought of as the slope and intercept of a line.
We would like to plot $\frac{1}{y} \frac{d y}{d t}$ as a function of $x$ and fit a line through this data.

## Method

Replace $\frac{d y}{d t}$ with its numerical derivative either forward or backward or central difference approximation.

$$
\frac{1}{y\left(t^{*}\right)} \frac{y(t+h)-y(t-h)}{2 h}=c x\left(t^{*}\right)-r,
$$

where $t^{*}$ could either be $t$ or $t+h$ for explicit or implicit Euler Method respectively.
We would like to plot $\frac{1}{y} \frac{d y}{d t}$ as a function of $x$ and fit a line through this data.

## Derivative Approximation Method

Returning to the data,

| Year | Lynx | Hare | Year | Lynx | Hare | Year | Lynx | Hare |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1900 | 4 | 30 | 1907 | 13 | 21.4 | 1914 | 45.7 | 52.3 |
| 1901 | 6.1 | 47.2 | 1908 | 8.3 | 22 | 1915 | 51.1 | 19.5 |
| 1902 | 9.8 | 70.2 | 1909 | 9.1 | 25.4 | 1916 | 29.7 | 11.2 |

Assuming $t=1$, the explicit Euler method reads

$$
\begin{aligned}
\frac{1}{y(t)} \frac{y(t+h)-y(t-h)}{2 h} & =c x(t)-r, \\
\frac{1}{6.1} \frac{9.8-4}{2} & =47.2 c-r
\end{aligned}
$$

Repeating for each year up to 1919 we obtain the system of equations that we will solve by regression.

## Direct Method

CPS 5310:
Parameter Estimation

Natasha
Sharma,
Ph.D.

Let us revisit the predator-prey model in a more general notation:

$$
\mathbf{y}^{\prime}=\mathbf{f}(t, \mathbf{y} ; \mathbf{p}), \quad \mathbf{y}, \mathbf{f} \in \mathbb{R}^{n}
$$

where $\mathbf{p}=\left(p_{1}, p_{2}, \cdots, p_{m}\right)^{T} \in \mathbb{R}^{m}$ denote the parameters. Also, assume that we have been given data at $k$ points:

$$
\mathbf{y}_{i}=\mathbf{y}\left(t_{i}\right) \quad i=1,2, \cdots k
$$

For the Lynx-Hare model we introduced, we have: $k=21$, $n=2, m=4$.

$$
\begin{aligned}
& y_{1}^{\prime}=p_{1} y_{1}-p_{2} y_{1} y_{2} \\
& y_{2}^{\prime}=-p_{3} y_{2}+p_{4} y_{1} y_{2}
\end{aligned}
$$

where $\mathbf{y}=\binom{y_{1}}{y_{2}} ; \mathbf{p}=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)^{T}$.

## Direct Method

Consider the following unconstrained optimization problem

$$
\min _{\mathbf{p}} E(\mathbf{p}):=\sum_{j=1}^{k}\left|\mathbf{y}\left(t_{j} ; \mathbf{p}\right)-\mathbf{y}_{j}\right|^{2}
$$

where $\boldsymbol{y}=\left|\binom{y_{1}}{y_{2}}\right|^{2}=y_{1}^{2}+y_{2}^{2}$.

