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4.3 Markov Chains

In real DNA molecules, the nucleotide bases are highly dependent on their neighbors. A
probability model that allows for such neighborhood dependence is called a Markov
chain. The Markov chain is a classical stochastic model that has been widely used in
modeling sequential phenomena where dependence among neighboring observations is
apparent. It is very natural that it is popularly adopted as a model for DNA sequences. In
this section, we discuss Markov chain in the context of nucleotide sequences. For a good
introduction to the theory of Markov chains, consult the book Introduction to Probability
Models (6th edition) by Sheldon M. Ross.

Mathematically, a Markov chain can be defined as a sequence of discrete random
variables X0, X1, X2, ...,each of which takes on a countable number of possible values. The
value taken by Xn is referred to as the state of the Markov chain at time n. At any n = 0, 1,
2,..., the conditional probability distribution of the random variable Xn+1 given the values
of its predecessors X0, X1, ..., Xn, depends only on the value of its immediate predecessor
Xn but not on those values of X0, X1, ..., Xn-1. In mathematical notation, we write
(4.3.1) }|{},,,,|{ 10011111 iXjXPiXiXiXiXjXP nnnnnn ======== +−−+ ! .

The probability above, denoted by Pij is known as the transition probability from state i to
state j. That is to say, if the Markov chain is in state i at the present time, Pij will represent
the probability that the chain is in state j one unit of time later.

In the context of DNA sequence analysis, each nucleotide base can be considered a
random variable Xn which takes on four possible values A, C, G, T.  The time index n is
actually the position of the base in the DNA sequence. The transition probability Pij is the
probability that the base at the next position is j given that the base at the present position
is i. It is most convenient to present the transition probabilities in the form of a 4 by 4
matrix
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Note that all entries of this matrix must be nonnegative numbers and the sum of each row
must equal 1. Matrices with these properties are called stochastic matrices.

Using the transition probability matrix, it will be easy to write down the probability
distribution of Xn+1 when we know the probability distribution of Xn. It is a simple
application of the Law of Total Probability. If we let fn stand for the probability
distribution (also referred to as the probability mass function) of Xn, we have
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For those who knows matrix multiplication, a convenient way of representing the
probability distribution of Xn is writing it as a row vector

)).(),(),(),(( TfCfCfAf nnnnn =ð  In this form, one can easily verify that

(4.3.2) Pðð nn =+1 .

The right hand side of the above equality refers to a matrix multiplication of nð to .P

Other Markov chain models
There are many other alternative Markov models for studying DNA. For example, if we
are interested in the distribution of strong/weak (resp. purine/pyrimidine) bases, we can
construct the sequence X0, X1, X2, ... to be binary random variables taking values S/W
(resp. R/Y). In such cases, the transition probability matrix will be 2 by 2.

It is also possible that the nucleotide bases of DNA are not only dependent on its
immediately preceding base, but rather a few, say m, preceding bases. This is referred to
as an mth order Markov nucleotide sequence. Strictly speaking, an mth order Markov
chain is not Markov, but can still be formulated as a suitable Markov chain model using a
slightly modified set up.

Let us look at a simple example where m = 2. Suppose that each base depends on the two
preceding bases. Denote the probability of observing base k, given that the two
immediately preceding bases are (i, j), by P(i,j),k.  We can construct a sequence of random
variables Y0, Y1, Y2, ... where Yn = (Xn, Xn+1) actually represents the pair of bases at
positions n and n+1. There are 16 possible values for the Y's, namely all the dinucleotide
pairs (A, A), (A, C), ..., (T, T), and it is not hard to see that the sequence Y0, Y1, Y2, ...
satisfy equation (4.4.1) and hence is itself a Markov chain. It has a 16 by 16 transition
probability matrix. The transition probability between the dinucleotide pair (b1, b2) and
(b1' , b2 ') must be 0 unless b2 = b1'.

The original Markov chain model that allows each base to depend on the preceding base
only can be called the first order Markov model. The model with independently generated
nucleotide base model can be called a 0th order Markov chain.

Question: What can you say about the four rows of the transition probability matrix
in a 0th order Markov nucleotide sequence model?
Answer:  ______________________
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Multi-step transition probability matrix
By iterating equation (4.4.2), we obtain for any integers n ≥ 0 and m > 0,

m
nmnmnmn PðPðPðð ==== −+−++ !2

21

So, suppose we are currently at base n of the DNA sequence and the probability
distribution is nð , then m bases later, the probability distribution mn+ð  is equal to nð

multiplied to mP , the mth power of the transition probability matrix P . In other words,

the matrix mP tells us with what probabilities the Markov chain transition from the

current base to m bases later. Hence, mP is called the m-step transition probability matrix.
Of course, P would be the one-step transition probability matrix.

The stationary distribution
Under suitable mathematical conditions on the matrix P , it can be proved that
independent of the initial probability distribution 0ð , nð  approaches a unique limiting

probability distribution ))(),(),(),(( TfGfCfAf=ð which satisfies the equation

(4.3.3) ðPð=
as n approaches infinity. This unique distribution ð is called the stationary distribution of
the Markov chain. In a very long Markov nucleotide sequence, as we move away from the
beginning of the sequence, the base distribution will get very close to ð . It can also be
interpreted as the long run proportions of observing the four bases. This distribution ð can
be obtained quite easily using the mathematical result in Markov chain theory which
states that the stationary distribution is the unique probability distribution which is a left
eigenvector with eigenvalue 1 for the matrix P . This probability distribution

))(),(),(),(( TfGfCfAf=ð  must be the one and only solution to the linear system of
equations:
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Solving for the stationary distribution ð for a Markov nucleotide sequence involves
solving a system of four equations in four unknowns, a task which generally takes a while
to accomplish working by hand. If a higher order Markov model is used, the size of the
linear system of equations grows exponentially. We will be working with 4m equations in
4m unknowns. This is much better done with the help of mathematical or statistical
software. The statistical package S-Plus comes with a built-in functions such as "solve" to
solve linear systems, and "eigen" that finds eigenvectors. In a later exercise, you will use
these to obtain stationary distributions.


