Homework 8
due Thursday, March 29

Define, for any real numbers a and b,

$$
T_{a, b}=\left(\begin{array}{cc}
a+b & b \\
b & a-b
\end{array}\right) .
$$

Also define

$$
D=\left\{T_{a, b}: a \in \mathbf{Z}, b \in \mathbf{Z}\right\} \subseteq M_{2}(\mathbf{Z}),
$$

a subset of $M_{2}(\mathbf{Z})$ (the set of 2×2 integer matrices).

1. Prove that D is a subring of $M_{2}(\mathbf{Z})$, with the usual matrix addition and multiplication.
2. Prove that D is an integral domain. (Hint: Remember that $\sqrt{2}$ is irrational.)
3. Prove that D is an ordered domain with D^{+}defined by each of the following two equations:
(a) $D^{+}=\left\{T_{a, b}: a+b \sqrt{2}>0\right\}$;
(b) $D^{+}=\left\{T_{a, b}: a-b \sqrt{2}>0\right\}$.
(This is two separate, but very similar, problems. The point is to see that the same integral domain can be ordered in more than one way!)
