Homework 7

due Thursday, March 22

Define

$$
D=\left\{\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right): a \in \mathbf{Z}, b \in \mathbf{Z}\right\} \subseteq M_{2}(\mathbf{Z})
$$

a subset of $M_{2}(\mathbf{Z})$ (the set of 2×2 integer matrices).

1. Prove that D is a subring of $M_{2}(\mathbf{Z})$, with the usual matrix addition and multiplication.
2. Prove that D is an integral domain.
3. Prove that the field of quotients of D is isomorphic to

$$
F=\left\{\left(\begin{array}{cc}
p & -q \\
q & p
\end{array}\right): p \in \mathbf{Q}, q \in \mathbf{Q}\right\} .
$$

Hints: A good first step will be to find formulas for the sum of two arbitrary matrices in D and for the product of two arbitrary matrices in D. For problem 3., show that every equivalence class $[M, N]$ for $M, N \in D$ contains a representative of the form (P, I) for some $P \in D$; in other words, that every pair (M, N) is equivalent to a pair of the form (P, I).

