1. Let $G=D_{4}$ be the group of symmetries of a square, described in Section 4.1, Example 12. (It is described there both geometrically, and in terms of permutations. You may use whichever description you prefer.)
(a) Prove that $H=\left\{e, \alpha^{2}\right\}$ is a normal subgroup of G.
(b) Find the group multiplication table of the quotient group G / H.
(c) We know that G / H has $8 / 2=4$ elements. From Section 4.4, Example 6, we know that there are only two different groups of order 4 (up to isomorphism): the cyclic group of order 4; and the Klein four group. Which of these two groups is G / H isomorphic to?
2. On Homework 4, Problem 1, you showed that the map $\phi: \mathbf{Z}_{14} \rightarrow \mathbf{Z}_{7}$ defined by

$$
\phi\left([x]_{14}\right)=[3 x]_{7}
$$

is a an epimorphism (surjective homomorphism) from the additive group $G=\mathbf{Z}_{14}$ to the additive group $H=\mathbf{Z}_{7}$. You also found the kernel K of that map. Show directly (without relying on Theorem 4.27 or 4.28) that G / K is isomorphic to H, thus illustrating Theorem 4.28.

