1. Recall (or recreate) the multiplication table you made for the group of symmetries of a triangle. Prove that this group is isomorphic to the group of all permutations on the set $\{1,2,3\}$.
2. Consider the additive group of reals \mathbf{R}, and its subgroup of integers \mathbf{Z}. Describe the coset $(23 / 17)+\mathbf{Z}$ and the coset $5+\mathbf{Z}$; in each case list several members of the coset, and also describe the general member of the coset. Then describe the set of all (left) cosets of \mathbf{Z} in \mathbf{R}.
3. Let G be a group, and let $b \in G$. Define $\phi_{b}: G \rightarrow G$ by

$$
\phi_{b}(g)=b^{-1} g b
$$

Prove that ϕ_{b} is an isomorphism from G to itself.
4. Let G be a group, and let H be a subgroup of G. Prove that $c \in H$ if and only if $c H=H$ and $H c=H$.

