ALGEBRAIC STRUCTURES Homework 4

due Thursday, February 15

1. Consider the additive groups \mathbf{Z}_{14} and \mathbf{Z}_7 , and define $\phi: \mathbf{Z}_{14} \to \mathbf{Z}_7$ by

 $\phi([x]_{14}) = [3x]_7.$

Prove that ϕ is a homomorphism and find ker ϕ . Is ϕ an epimorphism? Is ϕ a monomorphism?

- 2. Recall that the magnitude |a + bi| of a complex number a + bi is given by $|a + bi| = \sqrt{a^2 + b^2}$.
 - (a) Prove that $\phi(a + bi) = |a + bi|$ is a homomorphism from the multiplicative group of the complex numbers **C** to the multiplicative group of positive real numbers \mathbf{R}^+ .
 - (b) Draw the location in the complex plane of all the elements of ker ϕ .

3. Recall that if $\phi: G \to H$ is a bijection from set G to set H, then there is an inverse function $\psi: H \to G$, meaning $\psi(\phi(g)) = g$ for all $g \in G$ and $\phi(\psi(h)) = h$ for all $h \in H$. Prove that if ϕ is an isomorphism from group G to group H, then its inverse ψ is an isomorphism from H to G.