Homework 12

due Thursday, April 26

1. Find $s(x)$ and $t(x)$ in $\mathbf{Z}_{5}[x]$ such that $d(x)=f(x) s(x)+g(x) t(x)$, where

$$
f(x)=2 x^{3}+3 x^{2}+4 x+3, \quad g(x)=x^{5}+4 x^{4}+4 x^{3}+3 x^{2}+4 x+2 .
$$

2. Write

$$
4 x^{4}+2 x^{3}+2 x+1
$$

as a product of its leading coefficient and a finite number of monic polynomials over \mathbf{Z}_{5}.
3. Let F be a field. Prove that if 1 and -1 are each roots of

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n} \in F[x]
$$

then

$$
\sum_{i: i \text { even }} a_{i}=\sum_{j: j \text { odd }} a_{j}=0
$$

4. Let D be an integral domain. By Corollary 8.8, then $D[x]$ is an integral domain. Assume that D is an ordered integral domain, with positive elements D^{+}, and let $c \in D$. Prove that $D[x]$ is an ordered integral domain with each of the following sets of positive elements:
(a) $D[x]^{+}=\left\{f(x) \in D[x]: f(c) \in D^{+}\right\}$;
(b) $\left.D^{[} x\right]^{+}=\left\{f(x)=a_{0}+a_{1} x+\cdots a_{n} x^{n} \in D[x]: a_{n} \in D^{+}\right\}$.
(Recall the definition of $f(c)$ from Homework 11.) Note that in part (b), n is not fixed; in other words, a_{n} there is just the leading coefficient of the polynomial.

As in Homework 8, these are two separate but somewhat similar problems.

