Main Exercises 3
due 2pm, Thursday, February 21

1. Prove that if v_{1}, v_{2}, v_{3} is a basis of V, then

$$
v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}
$$

is also a basis of V.
2. Let

$$
U=\left\{\left(p \in \mathcal{P}_{4}(\mathbf{F}): p^{\prime \prime}(5)=0\right\}\right.
$$

Find a basis of U, and find a subspace W of $\mathcal{P}_{4}(\mathbf{F})$ such that $\mathcal{P}_{4}(\mathbf{F})=U \oplus W$.
3. Suppose U and W are each 5 -dimensional subspaces of \mathbf{C}^{8}. Prove that there are two vectors u, w in $U \cap W$ such that $u \neq z w$ for any $z \in \mathbf{C}$.
4. Suppose U_{1}, U_{2}, U_{3} are finite-dimensional subspaces of V. Prove that $U_{1}+U_{2}+U_{3}$ is finite-dimensional and

$$
\operatorname{dim}\left(U_{1}+U_{2}+U_{3}\right) \leq \operatorname{dim} U_{1}+\operatorname{dim} U_{2}+\operatorname{dim} U_{3}
$$

5. (Graduate students only) Assume U and W are subspaces of a finite-dimensional vector space V, and that $U \oplus W=V$. Let u_{1}, \ldots, u_{n} be a basis of U and let w_{1}, \ldots, w_{m} be a basis of W. Prove that

$$
u_{1}, \ldots, u_{n}, w_{1}, \ldots, w_{m}
$$

is a basis of V.

