Math 4326/5322 Dr. Duval

1. Prove that if v_1, v_2, v_3 is a basis of V, then

$$v_1, v_1 + v_2, v_1 + v_2 + v_3$$

is also a basis of V.

2. Let

$$U = \{ (p \in \mathcal{P}_4(\mathbf{F}) \colon p''(5) = 0 \}.$$

Find a basis of U, and find a subspace W of $\mathcal{P}_4(\mathbf{F})$ such that $\mathcal{P}_4(\mathbf{F}) = U \oplus W$.

- **3.** Suppose U and W are each 5-dimensional subspaces of \mathbb{C}^8 . Prove that there are two vectors u, w in $U \cap W$ such that $u \neq zw$ for any $z \in \mathbb{C}$.
- 4. Suppose U_1, U_2, U_3 are finite-dimensional subspaces of V. Prove that $U_1 + U_2 + U_3$ is finite-dimensional and

$$\dim(U_1 + U_2 + U_3) \le \dim U_1 + \dim U_2 + \dim U_3.$$

5. (Graduate students only) Assume U and W are subspaces of a finite-dimensional vector space V, and that $U \oplus W = V$. Let u_1, \ldots, u_n be a basis of U and let w_1, \ldots, w_m be a basis of W. Prove that

 $u_1,\ldots,u_n,w_1,\ldots,w_m$

is a basis of V.