Follow the separate general guidelines for Parts A,B,C. Be sure to include and label all four standard parts (a), (b), (c), (d) of Part A in what you hand in.

The Characteristic Polynomial (part II)

pp. 171-173
A: Reading questions. Due by 2 pm, Mon., 28 Apr.

1. Verify, using the definition of multiplicity, the following claim made on p. 171, of the linear operator T defined in equation 8.16: " 0 is an eigenvalue of T with multiplicity 2 [and] that 5 is an eigenvalue of T with multiplicity 1 ".
2. Where does the proof of Proposition 8.18 use the assumption that V is a complex vector space?
3. Fill in the missing details of the claim in the middle of p. 172 , that the characteristic polynomial of the operator defined by equation 8.16 equals $z^{2}(z-5)$.
4. Verify, directly, that the operator T defined in equation 8.16 satisfies the CayleyHamilton theorem. [Hint: This is easier to verify by first converting T to a matrix.]
5. What will you do with all the time you have, now that there are no more reading questions to answer?

B: Warmup exercises. For you to present in class. Due by end of class Tue., 29 Apr.
Ch. 8: Exercise 14.

