Follow the separate general guidelines for Parts A,B,C. Be sure to include and label all four standard parts (a), (b), (c), (d) of Part A in what you hand in.

Diagonal Matrices

pp. 87-90
A: Reading questions. Due by 2pm, Wed., 19 Mar.

1. Verify the claim at the bottom of p. 87 that an operator $T \in \mathcal{L}(V)$ has a diagonal matrix (with $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal and 0 's elsewhere) with respect to a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V if and only if

$$
T v_{1}=\lambda_{1} v_{1} ; \ldots ; T v_{n}=\lambda_{n} v_{n}
$$

2. Verify that the only eigenvalue of the linear operator T given in equation 5.19 is 0 , and that the corresponding set of eigenvectors is only 1-dimensional. In what way is this surprising?
3. Verify that $T \in \mathcal{L}\left(\mathbf{F}^{3}\right)$ defined by $T\left(z_{1}, z_{2}, z_{3}\right)=\left(4 z_{1}, 4 z_{2}, 5 z_{3}\right)$, as on p. 88, satisfies each of the five conditions (a)-(e) of Proposition 5.21. You may need to read the proof to help you with some of these, though I don't think you need to fully understand the proof in order to complete the verification of (a)-(e).

B: Warmup exercises. For you to present in class. Due by end of class Thu., 20 Mar.
Ch. 5: Exercise 11.

Inner Products

pp. 98-101
A: Reading questions. Due by 2 pm , Mon., 31 Mar.

1. The text claims near the bottom of p. 98 that " $[\mathrm{t}]$ he norm is not linear on \mathbf{R}^{n}." Verify this claim. [Hint: Define a function $N: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by $N(x)=\|x\|$, and show N is not linear.] How does this claim relate to the introduction of inner products?
2. Provide a little more explanation for the claim near the bottom of p. 99, "The equation above thus suggests that the inner product of $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{C}^{n}$ with z should equal

$$
w_{1} \bar{z}_{1}+\cdots+w_{n} \bar{z}_{n} . "
$$

3. Match the properties of the dot product described at the bottom of p. 98 to the five properties listed at the top of p .100 that define an inner product.
4. Provide justification for each step in the derivation, on p. 101, that $\langle u, v+w\rangle=$ $\langle u, v\rangle+\langle u, w\rangle$. Note that some of these will be properties of inner products, and others will be properties of complex conjugates (see p. 69).

B: Warmup exercises. For you to present in class. Due by end of class Tue., 1 Apr.
Verify 6.1 and 6.2 define inner products, as claimed.

