2 Homework 2

- 1. (a) (not to turn in) Review how counting dots can be used to explain why the addition of positive integers is commutative.
 - (b) Using a parallel structure to the above, explain why, for positive integer powers, the product of powers rule holds: for all $a \in \mathbb{R}$, $x_1, x_2 \in \mathbb{Z}_{>0}$, we have $a^{x_1}a^{x_2} = a^{x_1+x_2}$. Be sure to use the definition of positive integer power.
- 2. In the following explanations, be sure to:
 - Use the definition of *a*⁻¹
 - Use the definition of a^{-n} , where $n \in \mathbb{N}$
 - (a) (not to turn in) Review our in-class work on Natural and Integer Powers: Do Power Properties Hold?
 - (b) (not to turn in) Review how a movement and location model can be used to explain why the product of two negative integers is positive.
 - (c) Using a parallel structure to the above, explain why the power of power rule holds for negative integer powers of nonzero bases: for all $a \in \mathbb{R}$, $x_1, x_2 \in \mathbb{Z}$, with $a \neq 0$ and $x_1, x_2 < 0$, we have $(a^{x_1})^{x_2} = a^{x_1x_2}$.
- 3. In the following explanations, be sure to:
 - Use the definition of *a*^{1/q}
 - Use the definition of $a^{p/q} = (a^{1/q})^p$
 - Use the definitions of a^{-1} and a^{-n} , for $n \in \mathbb{N}$
 - (a) Explain why for all $a \in \mathbb{R}$, a > 0, and $p, q \in \mathbb{N}_{>0}$, we have $(a^p)^{-\frac{1}{q}} = (a^{-\frac{1}{q}})^p$.
 - (b) Explain why for all $a \in \mathbb{R}$, a > 0, and $p, q \in \mathbb{N}_{>0}$, we have $(a^{-p})^{-\frac{1}{q}} = (a^{-\frac{1}{q}})^{-p}$.
- 4. Use graphing technology to explore each of the following functions and then make a conjecture about the values of $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$. (You do not need to prove your conjecture.)
 - (a) $f(x) = (2^{-\frac{1}{x^2}})^{-x}$

(b)
$$f(x) = (a^{-\frac{1}{x}})^x$$

Note –

Theorem (0⁰ is an indeterminate form). For every real number *L*, there are functions $B : \mathbb{R} \to \mathbb{R}, E : \mathbb{R} \to \mathbb{R}$ such that $\lim_{x\to 0^+} B(x) = 0$, $\lim_{x\to 0^+} E(x) = 0$, and $\lim_{x\to 0^+} B(x)^{E(x)} = L$.

Note on theorem. We do not address the proof here, though the above task gives an indication of how wacky the behavior of limits to " 0^{0} " can be. Because of the infinitely many possibilities for limits to " 0^{0} ", this expression is called an "indeterminate form". It is a special and particularly pathological case of how a limit can be undefined.

5. (a) Which of the following equations have solutions? Explain why each does or does not have a solution.

$$5^{x} = 25$$
 (6.7)^x = 25 ($\frac{1}{10}$)^x = 25 (1.001)^x = 25 1^x = 25 0^x = 25

(b) Let $a \in \mathbb{R}$, a > 0. Suppose $a^x = a^{\pi}$. True or false? $x = \pi$.