2 Homework 2

1. (a) (not to turn in) Review how counting dots can be used to explain why the addition of positive integers is commutative.
(b) Using a parallel structure to the above, explain why, for positive integer powers, the product of powers rule holds: for all $a \in \mathbb{R}, x_{1}, x_{2} \in \mathbb{Z}_{>0}$, we have $a^{x_{1}} a^{x_{2}}=a^{x_{1}+x_{2}}$. Be sure to use the definition of positive integer power.
2. In the following explanations, be sure to:

- Use the definition of a^{-1}
- Use the definition of a^{-n}, where $n \in \mathbb{N}$
(a) (not to turn in) Review our in-class work on Natural and Integer Powers: Do Power Properties Hold?
(b) (not to turn in) Review how a movement and location model can be used to explain why the product of two negative integers is positive.
(c) Using a parallel structure to the above, explain why the power of power rule holds for negative integer powers of nonzero bases: for all $a \in \mathbb{R}, x_{1}, x_{2} \in \mathbb{Z}$, with $a \neq 0$ and $x_{1}, x_{2}<0$, we have $\left(a^{x_{1}}\right)^{x_{2}}=a^{x_{1} x_{2}}$.

3. In the following explanations, be sure to:

- Use the definition of $a^{1 / q}$
- Use the definition of $a^{p / q}=\left(a^{1 / q}\right)^{p}$
- Use the definitions of a^{-1} and a^{-n}, for $n \in \mathbb{N}$
(a) Explain why for all $a \in \mathbb{R}, a>0$, and $p, q \in \mathbb{N}_{>0}$, we have $\left(a^{p}\right)^{-\frac{1}{q}}=\left(a^{-\frac{1}{q}}\right)^{p}$.
(b) Explain why for all $a \in \mathbb{R}, a>0$, and $p, q \in \mathbb{N}_{>0}$, we have $\left(a^{-p}\right)^{-\frac{1}{q}}=\left(a^{-\frac{1}{q}}\right)^{-p}$.

4. Use graphing technology to explore each of the following functions and then make a conjecture about the values of $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$. (You do not need to prove your conjecture.)
(a) $f(x)=\left(2^{-\frac{1}{x^{2}}}\right)^{-x}$
(b) $f(x)=\left(a^{-\frac{1}{x}}\right)^{x}$

Note -
Theorem (0^{0} is an indeterminate form). For every real number L, there are functions $B: \mathbb{R} \rightarrow \mathbb{R}, E: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow 0^{+}} B(x)=0, \lim _{x \rightarrow 0^{+}} E(x)=0$, and $\lim _{x \rightarrow 0^{+}} B(x)^{E(x)}=L$.

Note on theorem. We do not address the proof here, though the above task gives an indication of how wacky the behavior of limits to " 0 " can be. Because of the infinitely many possibilities for limits to " 0 " , this expression is called an "indeterminate form". It is a special and particularly pathological case of how a limit can be undefined.
5. (a) Which of the following equations have solutions? Explain why each does or does not have a solution.

$$
5^{x}=25 \quad(6.7)^{x}=25 \quad\left(\frac{1}{10}\right)^{x}=25 \quad(1.001)^{x}=25 \quad 1^{x}=25 \quad 0^{x}=25
$$

(b) Let $a \in \mathbb{R}, a>0$. Suppose $a^{x}=a^{\pi}$. True or false? $x=\pi$.

