Homework for Chapters 3-4

- 0. In these chapters, we learned about:
 - Functions and invertible functions
 - · Partial inverse of a function and how to construct them
 - Correspondence and covariation views for inverse and composition
 - The mathematical/teaching practices of:
 - Introducing a definition
 - Explaining a mathematical "test" of a property
 - Noticing student thinking
 - Recognizing and explaining correspondence and covariation views.

For each of these ideas:

- (a) Where in the text are these ideas located?
- (b) Review this section of the text. What definitions and results were important? How do examples use these definitions and results?
- (c) What questions or comments do you have about the ideas in this section?

CHAPTER 3

1. Explain why the following procedure works:

To find the formula for the inverse of an invertible function, switch the y's and x's then solve for y.

Explain why this procedure works in terms of the example:

- (a) f(x) = 5x
- (b) $f(x) = x^3 1$
- (c) $f(x) = \frac{1}{x-3}$

Then:

- (d) Explain why this procedure in general terms.
- (e) Explain why this procedure is equivalent to reflecting the graph of the function about the line y = x.
- (f) Explain what would work and what would not work if you were to use this procedure on non-invertible functions.
- 2. (This problem comes from Mason, Burton, and Stacey (2010, p. 203)³) Under what conditions can you rotate the graph of a function about the origin, and still have the resulting graph being the graph of a function? If the graph of a function cannot be rotated about the origin without ceasing to be the graph of a function, might there be other points which could act as center of rotation and preserve the property of being the graph of a function?
- 3. (a) Let f and g be two invertible functions. Explain why $g \circ f$ is invertible in terms of the middle school and university versions of the definition of relation.
 - (b) Explain why the inverse of $g \circ f$ should be $(f^{-1}) \circ (g^{-1})$ in terms of the middle school version of the definition of composition.
 - (c) Explain why the inverse of $g \circ f$ should be $(f^{-1}) \circ (g^{-1})$ in terms of the university version of the definition of invertible function.
- 4. (a) Construct three candidates for partial inverses for the sine function.
 - (b) On what subset of the domain of sine do each of your candidates serve as a true inverse? On what subset of the domain of sine do your candidates serve as only a partial inverse?
 - (c) Construct three candidates for partial inverses for the cosine function?

³Mason, J., Burton, L., Stacey, K. (2010). *Thinking Mathematically*. Essex, England: Pearson Education Limited.

- (d) On what subset of the domain of cosine do each of your candidates serve as a true inverse? On what subset of the domain of cosine do your candidates serve as only a partial inverse?
- 5. Explain the following tests of a mathematical property using the structure discussed in Section 3.3.2 (beginning p. 34). In communicating your explanation, place the different sections of the structure separately from each other and label them.
 - (a) Vertical line test.
 - (b) Horizontal line test.

For the following tests of mathematical properties, in the section on *why* it works, provide an explanation in two parts, first in terms of a specific example, and second as a general explanation.

- (c) Testing points on a graph of a linear inequality to see which side to shade (e.g., http://www.wtamu.edu/academic/anns/mps/math/mathlab/beg_algebra/beg_alg_tut24_ineq.htm). Note: The definition of graph of an inequality in x and y is similar to that of graph of an equation: It is the set of points (a, b) that if you evaluate the inequality at x = a and y = b, you get a true statement. The property being tested here is of a half-plane, and whether the points in that half-plane satisfy a given inequality.
- (d) Direct comparison test (for convergence of a series).
- (e) Ratio test (for convergence of a series).
- 6. Examine the table to the right. Based on the given information, discuss how change in *x* appears to impact change in *y*.

			v
(a)	If <i>x</i> changes by ± 1 units, how does <i>y</i> appear to change?	3	16
(b)	If <i>x</i> changes by $\pm h$ units, how does <i>y</i> appear to change, in terms of <i>h</i> ?	5	26
(c)	Based on how change in x impacts change in y , and using the given data, describe	6	31
	how you would find a plausible value of y when x is 0.	9	46

- 7. Pot A and Pot B have the radial cross section shown below. (This means that to get the shapes of Pot A and Pot B, you can rotate this cross section around a central axis.) The sides of Pot A are vertical. Both pots have a 1 gallon capacity.
 - (a) Water is being poured into Pot A at an unsteady pace. Draw a graph that represents the relationship between volume of water and height of the water, with volume as input variable, height as output variable.
 - (b) Draw a graph that represents the same relationship for Pot A, but this time with height as an input variable and volume as output variable.
 - (c) Water is being poured into Pot B at an unsteady pace. Draw a graph that represents the relationship between volume of water and height of the water, with volume as input variable, height as output variable.
 - (d) Draw a graph that represents the same relationship for Pot B, but this time with height as an input variable and volume as output variable.

