2 Lesson 2

OPENING INQUIRY: DECISIONS HAVE CONSEQUENCES

0. (a) What are the three power properties?

(b) What is the definition of $a^{1/q}$?

(c) What is the definition of $a^{p/q}$? (Look these up from your notes if you can't remember.)

1. What is $(-8)^{1/3}$?

2. Find three ways to simplify the expression $(-8)^{2/6}$.

POSITIVE INTEGER POWERS: ARE PRODUCTS AND POWERS WELL-DEFINED?

1. How is a^x defined when $x \in \mathbb{N}_{>0}$?

Let the exponents x₁, x₂ be positive integers.
 Are products and powers of powers well-defined for any value of the base a ∈ ℝ?
 Complete the table. Mark √ for "Yes" and × for "No".

	Are these equalities always well-defined and true?	
When $x_1, x_2 \in \mathbb{N}_{>0}$ and \downarrow	$a^{x_1}a^{x_2} = a^{x_2}a^{x_1}$	$(a^{x_1})^{x_2} = (a^{x_2})^{x_1}$
<i>a</i> > 0		
a = 0		
<i>a</i> < 0		

3. Reasoning:

Adding and multiplying integers \longleftrightarrow Products and powers of integer powers

1. How is a^x defined when x = 0 and $x \in \mathbb{Z}$, x < 0? When x = 0:

When x < 0:

2. Here are some sample solutions to homework problems. What questions and comments do you have?

- *Explain why* -5 + 3 = 3 + -5:
 - Think of -5 as five movements by -1, and +3 by three movements of +1.
 - The LHS (left hand side expression) is like starting at 0, moving -5, then moving +3.
 The RHS (right hand side expression) is like starting at 0, moving +3, then moving -5.
 - Either way, is the net result of moving -1 five times and +1 three times.
 - Movements of -1 paired with movements of 1 result in a net movement of 0, because -1 and +1 are additive inverses.
 - After pairing up the movements, there are two +1 movements remaining.
 - So -5 + 3 = 3 + -5 = +2.
- *Explain why* $(-3) \times (-2) = 6$:
 - Multiplying −3 by −2 means taking the movement −3 twice and then switching the direction of the result.
 - Twice the movement -3 is the movement -6.
 - Switching the direction of the movement -6 gives us the movement +6.
 - So $(-3) \times (-2) = 6$.

3. Suppose your students have just learned that a^{-1} means $\frac{1}{a}$ and they are still struggling with simplifying fractional expressions with variables, as well as remembering what a^{-1} means.

With the above in mind, work on (a)(b)(c).

In all your explanations, be sure to:

- Use the definition of *a*⁻¹
- Use the definition of a^{-n} , where $n \in \mathbb{N}$
- Use a structure as similar as possible to one of the explanations above.
- (a) What is an explanation that could help your students understand why $a^{-5}a^3 = a^3a^{-5}$?

(b) What are $a^n a^{-m}$ and $a^{-m} a^n$ when n > m? When n = m? When n < m?

(c) What is an explanation that could help your students understand why $(a^{-3})^{-2} = a^6$?

NATURAL AND INTEGER POWERS: DO POWER PROPERTIES HOLD?

Let $x_1, x_2 \in \mathbb{Z}$.

Are the power properties well-defined for any value of the base $a \in \mathbb{R}$?

Complete the table. Mark \checkmark for "Yes" and \times for "No".

	(a) Are these equalities always well-defined and true? (b) What number line movement and location ideas do these most resemble?	
When $x_1, x_2 \in \mathbb{Z}$ and \downarrow	$a^{x_1}a^{x_2} = a^{x_2}a^{x_1}$	$(a^{x_1})^{x_2} = (a^{x_2})^{x_1}$
<i>a</i> > 0		
a = 0		
<i>a</i> < 0		

Reasoning:

DIVISIONS AND FRACTIONS \longleftrightarrow Rational powers

- 1. How is $a^{\frac{p}{q}}$ defined, for $p,q \in \mathbb{Z}, q \neq 0$? p > 0: p = 0:
- 2. Here are some sample solutions to homework problems. What questions and comments do you have?
 - There is only one number that can be the result of $5 \div 3$. (*)
 - Let $x = 5 \div 3$. By definition of division, *x* is the quantity such that $x \times 3 = 5$.
 - Let $y \in \mathbb{R}$. Either y = x, y > x, or y < x.
 - Suppose y < x. Then 3y < 3x = 5, so $y \neq 5 \div 3$.
 - Suppose y > x Then 3y > 3x = 5, so $y \neq 5 \div 3$.
 - Therefore y = x and there is only one value such that $x = 5 \div 3$.
 - $5 \div 3$ is the same number as $\frac{1}{3} \cdot 5$.
 - Start with $x' = \frac{1}{3} \cdot 5$.
 - See what 3x' equals. If 3x' = 5, then by (*), we can conclude x' = x.

$$3x' = \frac{1}{3} \cdot 5 \cdot 3 = \frac{1}{3} \cdot 3 \cdot 5$$
 commutativity of multiplication in \mathbb{Z}
= 1.5 definition of fraction

p < 0:

= 5 multiplicative identity

• Hence $5 \div 3 = \frac{1}{3} \cdot 5$.

3. Suppose your students have just learned *q*-th roots, and they are still struggling with simplifying radical expressions and remembering what q-th roots are. They also need to review the definition of a^{-1} as 1/a. With the above in mind, work on (a)(b)(c).

In all your explanations, be sure to:

- Use the definition of $a^{1/q}$
- Use the definition of a^{p/q} = (a^{1/q})^p
 Use the definitions of a⁻¹ and a⁻ⁿ, for n ∈ N
- Use a structure as similar as possible to the explanations above.

(a) Help your students understand why $(7^5)^{1/3} = (7^{1/3})^5$.

(b) Help your students understand why, in general, $(a^p)^{1/q} = (a^{1/q})^p$. (Assume *a*, *p*, *q* are all positive and $p,q \in \mathbb{N}$.)

(c) Help your students understand why $(7^{-5})^{1/3} = (7^{1/3})^{-5}$.

RATIONAL POWERS OF NEGATIVE BASES

- 1. Analyze this claim: $(-1)^{\frac{1}{3}}(-1)^{\frac{1}{9}} = (-1)^{\frac{1}{3}+\frac{1}{9}}$. Is the equation a true statement? A false statement?
- 2. Now analyze this claim: $((-7)^5)^{1/3} = ((-7)^{1/3})^5$.
- 3. Using only the numbers $\pm 1, \pm 2, \pm 4, \pm 8$, come up with new examples that break the power of powers property.
- 4. Based on the definition of $a^{1/q}$ and $a^{p/q}$, does $((-7)^5)^{1/3} = ((-7)^{1/3})^5$? $((-7)^4)^{1/3} = ((-7)^{1/3})^4$? $((-7)^3)^{1/4} = ((-7)^{1/4})^3$? $((-7)^{10})^{1/4} = ((-7)^{1/4})^1$ or what *p* and *q* do these definitions seem to work for negative bases without problems?

RATIONAL POWERS: DO POWER PROPERTIES HOLD?

Let the exponents x_1, x_2 be rational.

Are the power properties well-defined for any value of the base $a \in \mathbb{R}$?

Complete the table. Mark \checkmark for "Yes" and \times for "No".

	(a) Are these equalities always well-defined and true?(b) What fraction ideas do these most resemble?	
When x_1, x_2 are zero or negative and \downarrow	$a^{x_1}a^{x_2}=a^{x_2}a^{x_1}$	$(a^{x_1})^{x_2} = (a^{x_2})^{x_1}$
<i>a</i> > 0		
<i>a</i> = 0		
<i>a</i> < 0		

Reasoning:

LIMITS IN HIGH SCHOOL CURRICULA

For homework, you investigated:

Here are some places where limits and convergence can appear in high school curricula:

- Geometry: Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri?s principle, and informal limit arguments. (Common Core G-GMD.1)
- Pre-calculus: *Limits of functions and sequences*. (Lincoln Public School standards and course descriptions, https://home.lps.org/math/secondary/#)
- AP Calculus: The derivative of a function is defined as the limit of a difference quotient and can be determined using a variety of strategies. (College Board Course and Exam Description: AP Calculus AB and AP Calculus BC, https://apcentral.collegeboard.org/pdf/ap-calculus-ab-and-bc-course-and-exam-description.pdf)

(a) Describe an example of a convergent sequence that you might use while teaching one of geometry, pre-calc, or calculus.

(b) What is an (informal) explanation of what it means for a sequence to converge or limit to something? This explanation should work across all these courses.

Here is a possible response. What questions and comments do you have?

(a)

- *Geometry.* Given a circle with radius *r*. Let c_1 be the area of an equilateral triangle inscribed in the circle. Let c_2 be the area of a square inscribed in the circle. Let c_3 be the area of a regular pentagon inscribed in the circle. Keep on increasing the number of sides of the inscribed polygon in the circle, so c_n is the area of a regular n + 2-gon inscribed in the circle. The limit of the sequence $\{c_1, c_2, ...\}$ is the area of the circle. That is, $\lim_{n\to\infty} c_n = \pi r^2$.
- *Pre-calculus*. Let $c_1 = \frac{1}{2}, c_2 = \frac{3}{4}, c_3 = \frac{7}{8}, \ldots, c_n = 1 \frac{1}{2^n}, \ldots$ Then the sequence $\{c_1, c_2, \ldots\}$ converges to 1. That is, $\lim_{n\to\infty} c_n = 1$.
- *AP Calculus*. The instantaneous rate of change of a function f at a point x_0 is $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$. Let $c_1 = \frac{f(x_0+0.1)-f(x_0)}{0.1}, c_2 = \frac{f(x_0+0.01)-f(x_0)}{0.01}, \dots, c_n = \frac{f(x_0+10^{-n})-f(x_0)}{10^{-n}}, \dots$ When this sequence converges, we have $f'(x_0) = \lim_{n\to\infty} c_n$.

(b) A sequence $\{c_0, c_1, c_2, ...\}$ converges to a real number if, as n gets larger, c_n and c_{n-1} get closer and closer to each other to the point where there is practically 0 difference between them.

LIMITS OF POWERS

For homework, you graphed variations of 0^x and 5^x . The graphs you sketched looked like:

- (a) Look at the first set of variations. As we move from the graph of 0.1^x to 0.001^x to 0.00001^x , what happens to the instantaneous slope at the point (0, 1)?
- (b) What do you think the slope of $\lim_{n\to\infty} \left(\frac{1}{10^n}\right)^x$ would be, near x = 0?
- (c) If the function 0^x could be assigned a slope at x = 0, what should it be?
- (d) How do you think the slope of $\lim_{n\to\infty} \left(5 + \frac{1}{10^n}\right)^x$ compares to the slope of 5^x , near $x = \pi$?

Takeaways:

REAL POWERS: DO POWER PROPERTIES HOLD?

1. How is a^x defined when $x \in \mathbb{R}$?

Let the exponents x₁, x₂ ∈ ℝ.
 Are the power properties well-defined for any value of the base a ∈ ℝ?
 Complete the table. Mark √ for "Yes" and × for "No".

	Are these equalities always well-defined and true?	
When x_1, x_2 are zero or negative and \downarrow	$a^{x_1}a^{x_2}=a^{x_2}a^{x_1}$	$(a^{x_1})^{x_2} = (a^{x_2})^{x_1}$
a > 0		
a = 0		
<i>a</i> < 0		

3. Reasoning:

POWER PROPERTIES: FINAL DRAFT

Property 2.1 (Power Properties). Let $a \in \mathbb{R}$, a > 0 and x, x_1 , $x_2 \in \mathbb{R}$. Then exponential expression of the form a^x satisfy the following properties:

- (1st power) $a^1 = a$
- (product of powers property) $a^{x_1+x_2} = a^{x_2+x_1} = a^{x_1}a^{x_2}$
- (power of a power property) $(a^{x_1})^{x_2} = (a^{x_2})^{x_1} = a^{x_1x_2}$

of convergent sequence for values and rates of change

Note: Power properties allow us to say that, for positive bases, exponent addition and multiplication are commutative, associative, and satisfy the distributive property.

When $a \in \mathbb{R}$ and $x_1, x_2 \in \mathbb{N}_{>0}$, the power properties hold. When $a \in \mathbb{R}$ and $x_1, x_2 \in \mathbb{Z}$, the power properties still hold as long as $a \neq 0$. But when $x_1, x_2 \in \mathbb{Q}$ or $x_1, x_2 \in \mathbb{R}$, then we need to restrict the base to the domain a > 0.

EXPLAINING POWER PROPERTIES: PARALLELS IN K-12 MATHEMATICS

Т

Explaining power properties	Parallel in K-12
Power properties for positive integer exponents How: Counting positive integer number of real factors $x_{2} \begin{cases} a \cdot a \cdots a \\ a \cdot a \cdots a \\ \vdots & \text{or} \\ \frac{a \cdot a \cdots a}{x_{1}} & x_{1} \begin{cases} a & a & a \\ a & a & a \\ \vdots & \vdots & \vdots \\ a & a & a \\ \frac{a \cdot a & a}{x_{2}} \end{cases}$	Commutativity of addition and multiplication of positive integers How: Counting dots $\overbrace{\mathfrak{s}+3:3+5}^{(\mathfrak{s},\mathfrak{s},\mathfrak{s})}$ $\overbrace{\mathfrak{s}+3:3\times5}^{(\mathfrak{s},\mathfrak{s},\mathfrak{s})}$ $\overbrace{\mathfrak{s}+3:3\times5}^{(\mathfrak{s},\mathfrak{s},\mathfrak{s})}$
Power properties for integer exponents How: Multiplying and dividing factors; pair up multiplicative inverses.	Commutativity of addition and multiplication of integers How: Location/movement on number line; pair up additive inverses
Power properties for rational non-integer exponents How: Compare powers; use definition of <i>q</i> -th root, which is based on definition of fraction	Arithmetic properties of division and fractions (e.g., $p \div q = \frac{1}{q} \cdot p$) How: Comparing lengths; use definition of division and definition of fraction $5 \div 3$ 4 7 7 7 7 7 7 7 7
Power properties for real non-rational exponents How: Use sequences of rational powers; use meaning	Limits of sequences, in pre-calculus and calculus How: Meaning of convergence