2 Lesson 2

Opening InQuiry: Decisions have consequences

0 . (a) What are the three power properties?
(b) What is the definition of $a^{1 / q}$?
(c) What is the definition of $a^{p / q}$? (Look these up from your notes if you can't remember.)

1. What is $(-8)^{1 / 3}$?
2. Find three ways to simplify the expression $(-8)^{2 / 6}$.

POSITIVE INTEGER POWERS: ARE PRODUCTS AND POWERS WELL-DEFINED?

1. How is a^{x} defined when $x \in \mathbb{N}_{>0}$?
2. Let the exponents x_{1}, x_{2} be positive integers.

Are products and powers of powers well-defined for any value of the base $a \in \mathbb{R}$? Complete the table. Mark \checkmark for "Yes" and \times for "No".

	Are these equalities always well-defined and true?	
When $x_{1}, x_{2} \in \mathbb{N}_{>0}$ and \downarrow	$a^{x_{1}} a^{x_{2}}=a^{x_{2}} a^{x_{1}}$	$\left(a^{x_{1}}\right)^{x_{2}}=\left(a^{x_{2}}\right)^{x_{1}}$
$a>0$		
$a=0$		
$a<0$		

3. Reasoning:

ADDING AND MULTIPLYING INTEGERS \longleftrightarrow PRODUCTS AND POWERS OF INTEGER POWERS

1. How is a^{x} defined when $x=0$ and $x \in \mathbb{Z}, x<0$? When $x=0$:

When $x<0$:
2. Here are some sample solutions to homework problems. What questions and comments do you have?

- Explain why $-5+3=3+-5$:
- Think of -5 as five movements by -1 , and +3 by three movements of +1 .
- The LHS (left hand side expression) is like starting at 0 , moving -5 , then moving +3 . The RHS (right hand side expression) is like starting at 0 , moving +3 , then moving -5 .
- Either way, is the net result of moving -1 five times and +1 three times.
- Movements of -1 paired with movements of 1 result in a net movement of 0 , because -1 and +1 are additive inverses.
- After pairing up the movements, there are two +1 movements remaining.
- So $-5+3=3+-5=+2$.
- Explain why $(-3) \times(-2)=6$:
- Multiplying -3 by -2 means taking the movement -3 twice and then switching the direction of the result.
- Twice the movement -3 is the movement -6 .
- Switching the direction of the movement -6 gives us the movement +6 .
- So $(-3) \times(-2)=6$.

3. Suppose your students have just learned that a^{-1} means $\frac{1}{a}$ and they are still struggling with simplifying fractional expressions with variables, as well as remembering what a^{-1} means.
With the above in mind, work on (a)(b)(c).
In all your explanations, be sure to:

- Use the definition of a^{-1}
- Use the definition of a^{-n}, where $n \in \mathbb{N}$
- Use a structure as similar as possible to one of the explanations above.
(a) What is an explanation that could help your students understand why $a^{-5} a^{3}=a^{3} a^{-5}$?
(b) What are $a^{n} a^{-m}$ and $a^{-m} a^{n}$ when $n>m$? When $n=m$? When $n<m$?
(c) What is an explanation that could help your students understand why $\left(a^{-3}\right)^{-2}=a^{6}$?

NATURAL AND INTEGER POWERS: DO POWER PROPERTIES HOLD?

Let $x_{1}, x_{2} \in \mathbb{Z}$.
Are the power properties well-defined for any value of the base $a \in \mathbb{R}$?
Complete the table. Mark \checkmark for "Yes" and \times for "No".

When $x_{1}, x_{2} \in \mathbb{Z}$ and \downarrow	(a) Are these equalities always well-defined and true? (b) What number line movement and location ideas do these most resemble?	
	$a^{x_{1}} a^{x_{2}}=a^{x_{2}} a^{x_{1}}$	$\left(a^{x_{1}}\right)^{x_{2}}=\left(a^{x_{2}}\right)^{x_{1}}$
$a>0$		
$a=0$		
$a<0$		

Reasoning:

DIVISIONS AND FRACTIONS \longleftrightarrow RATIONAL POWERS

1. How is $a^{\frac{p}{q}}$ defined, for $p, q \in \mathbb{Z}, q \neq 0$?

$$
p>0: \quad p=0: \quad p<0
$$

2. Here are some sample solutions to homework problems. What questions and comments do you have?

- There is only one number that can be the result of $5 \div 3$. (*)
- Let $x=5 \div 3$. By definition of division, x is the quantity such that $x \times 3=5$.
- Let $y \in \mathbb{R}$. Either $y=x, y>x$, or $y<x$.
- Suppose $y<x$. Then $3 y<3 x=5$, so $y \neq 5 \div 3$.
- Suppose $y>x$ Then $3 y>3 x=5$, so $y \neq 5 \div 3$.
- Therefore $y=x$ and there is only one value such that $x=5 \div 3$.
- $5 \div 3$ is the same number as $\frac{1}{3} \cdot 5$.
- Start with $x^{\prime}=\frac{1}{3} \cdot 5$.
- See what $3 x^{\prime}$ equals. If $3 x^{\prime}=5$, then by $\left({ }^{*}\right)$, we can conclude $x^{\prime}=x$.

$$
\begin{aligned}
3 x^{\prime}=\frac{1}{3} \cdot 5 \cdot 3 & =\frac{1}{3} \cdot 3 \cdot 5 \text { commutativity of multiplication in } \mathbb{Z} \\
& =1 \cdot 5 \text { definition of fraction } \\
& =5 \text { multiplicative identity }
\end{aligned}
$$

- Hence $5 \div 3=\frac{1}{3} \cdot 5$.

3. Suppose your students have just learned q-th roots, and they are still struggling with simplifying radical expressions and remembering what q-th roots are. They also need to review the definition of a^{-1} as $1 / a$. With the above in mind, work on (a)(b)(c).
In all your explanations, be sure to:

- Use the definition of $a^{1 / q}$
- Use the definition of $a^{p / q}=\left(a^{1 / q}\right)^{p}$
- Use the definitions of a^{-1} and a^{-n}, for $n \in \mathbb{N}$
- Use a structure as similar as possible to the explanations above.
(a) Help your students understand why $\left(7^{5}\right)^{1 / 3}=\left(7^{1 / 3}\right)^{5}$.
(b) Help your students understand why, in general, $\left(a^{p}\right)^{1 / q}=\left(a^{1 / q}\right)^{p}$. (Assume a, p, q are all positive and $p, q \in \mathbb{N}$.)
(c) Help your students understand why $\left(7^{-5}\right)^{1 / 3}=\left(7^{1 / 3}\right)^{-5}$.

Rational powers of negative bases

1. Analyze this claim: $(-1)^{\frac{1}{3}}(-1)^{\frac{1}{9}}=(-1)^{\frac{1}{3}+\frac{1}{9}}$. Is the equation a true statement? A false statement?
2. Now analyze this claim: $\left((-7)^{5}\right)^{1 / 3}=\left((-7)^{1 / 3}\right)^{5}$.
3. Using only the numbers $\pm 1, \pm 2, \pm 4, \pm 8$, come up with new examples that break the power of powers property.
4. Based on the definition of $a^{1 / q}$ and $a^{p / q}$, does $\left((-7)^{5}\right)^{1 / 3}=\left((-7)^{1 / 3}\right)^{5} ?\left((-7)^{4}\right)^{1 / 3}=\left((-7)^{1 / 3}\right)^{4}$? $\left((-7)^{3}\right)^{1 / 4}=\left((-7)^{1 / 4}\right)^{3} ?\left((-7)^{10}\right)^{1 / 4}=\left((-7)^{1 / 4}\right)^{1} 0$? For what p and q do these definitions seem to work for negative bases without problems?

Rational powers: Do power properties hold?

Let the exponents x_{1}, x_{2} be rational.
Are the power properties well-defined for any value of the base $a \in \mathbb{R}$?
Complete the table. Mark \checkmark for "Yes" and \times for "No".

	(a) Are these equalities always well-defined and true? When x_{1}, x_{2} are zero or negative and \downarrow	(b) What fraction ideas do these most resemble?
$a>0$	$a^{x_{1}} a^{x_{2}}=a^{x_{2}} a^{x_{1}}$	$\left(a^{x_{1}}\right)^{x_{2}}=\left(a^{x_{2}}\right)^{x_{1}}$
$a=0$		
$a<0$		

Reasoning:

LIMITS IN HIGH SCHOOL CURRICULA

For homework, you investigated:
Here are some places where limits and convergence can appear in high school curricula:

- Geometry: Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri?s principle, and informal limit arguments. (Common Core G-GMD.1)
- Pre-calculus: Limits of functions and sequences. (Lincoln Public School standards and course descriptions, https://home.lps.org/math/secondary/\#)
- AP Calculus: The derivative of a function is defined as the limit of a difference quotient and can be determined using a variety of strategies. (College Board Course and Exam Description: AP Calculus AB and AP Calculus BC, https: // apcentral. collegeboard. org/pdf/
ap-calculus-ab-and-bc-course-and-exam-description.pdf)
(a) Describe an example of a convergent sequence that you might use while teaching one of geometry, pre-calc, or calculus.
(b) What is an (informal) explanation of what it means for a sequence to converge or limit to something? This explanation should work across all these courses.

Here is a possible response. What questions and comments do you have?
(a)

- Geometry. Given a circle with radius r. Let c_{1} be the area of an equilateral triangle inscribed in the circle. Let c_{2} be the area of a square inscribed in the circle. Let c_{3} be the area of a regular pentagon inscribed in the circle. Keep on increasing the number of sides of the inscribed polygon in the circle, so c_{n} is the area of a regular $n+2$-gon inscribed in the circle. The limit of the sequence $\left\{c_{1}, c_{2}, \ldots\right\}$ is the area of the circle. That is, $\lim _{n \rightarrow \infty} c_{n}=\pi r^{2}$.
- Pre-calculus. Let $c_{1}=\frac{1}{2}, c_{2}=\frac{3}{4}, c_{3}=\frac{7}{8} \ldots, c_{n}=1-\frac{1}{2^{n}}, \ldots$. Then the sequence $\left\{c_{1}, c_{2}, \ldots\right\}$ converges to 1 . That is, $\lim _{n \rightarrow \infty} c_{n}=1$.
- AP Calculus. The instantaneous rate of change of a function f at a point x_{0} is $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$. Let $c_{1}=\frac{f\left(x_{0}+0.1\right)-f\left(x_{0}\right)}{0.1}, c_{2}=\frac{f\left(x_{0}+0.01\right)-f\left(x_{0}\right)}{0.01}, \ldots c_{n}=\frac{f\left(x_{0}+10^{-n}\right)-f\left(x_{0}\right)}{10^{-n}}, \ldots$. When this sequence converges, we have $f^{\prime}\left(x_{0}\right)=\lim _{n \rightarrow \infty} c_{n}$.
(b) A sequence $\left\{c_{0}, c_{1}, c_{2}, \ldots\right\}$ converges to a real number if, as n gets larger, c_{n} and c_{n-1} get closer and closer to each other to the point where there is practically 0 difference between them.

LIMITS OF POWERS

For homework, you graphed variations of 0^{x} and 5^{x}.
The graphs you sketched looked like:

$$
0^{x},(0.1)^{x},(0.001)^{x}(0.000001)^{x}
$$

$$
\text { near } x=0
$$

$5^{x},(5.1)^{x},(5.001)^{x}(5.000001)^{x}$
near $x=\pi$
(a) Look at the first set of variations. As we move from the graph of 0.1^{x} to 0.001^{x} to 0.000001^{x}, what happens to the instantaneous slope at the point $(0,1)$?
(b) What do you think the slope of $\lim _{n \rightarrow \infty}\left(\frac{1}{10^{n}}\right)^{x}$ would be, near $x=0$?
(c) If the function 0^{x} could be assigned a slope at $x=0$, what should it be?
(d) How do you think the slope of $\lim _{n \rightarrow \infty}\left(5+\frac{1}{10^{n}}\right)^{x}$ compares to the slope of 5^{x}, near $x=\pi$?

Takeaways:

REAL POWERS: DO POWER PROPERTIES HOLD?

1. How is a^{x} defined when $x \in \mathbb{R}$?
2. Let the exponents $x_{1}, x_{2} \in \mathbb{R}$.

Are the power properties well-defined for any value of the base $a \in \mathbb{R}$?
Complete the table. Mark \checkmark for "Yes" and \times for "No".

	Are these equalities always well-defined and true?	
When x_{1}, x_{2} are zero or negative and \downarrow	$a^{x_{1}} a^{x_{2}}=a^{x_{2}} a^{x_{1}}$	$\left(a^{x_{1}}\right)^{x_{2}}=\left(a^{x_{2}}\right)^{x_{1}}$
$a>0$		
$a=0$		
$a<0$		

3. Reasoning:

Power Properties: Final Draft

Property 2.1 (Power Properties). Let $a \in \mathbb{R}, a>0$ and $x, x_{1}, x_{2} \in \mathbb{R}$. Then exponential expression of the form a^{x} satisfy the following properties:

- (1st power) $a^{1}=a$
- (product of powers property) $a^{x_{1}+x_{2}}=a^{x_{2}+x_{1}}=a^{x_{1}} a^{x_{2}}$
- (power of a power property) $\left(a^{x_{1}}\right)^{x_{2}}=\left(a^{x_{2}}\right)^{x_{1}}=a^{x_{1} x_{2}}$

Note: Power properties allow us to say that, for positive bases, exponent addition and multiplication are commutative, associative, and satisfy the distributive property.
When $a \in \mathbb{R}$ and $x_{1}, x_{2} \in \mathbb{N}_{>0}$, the power properties hold. When $a \in \mathbb{R}$ and $x_{1}, x_{2} \in \mathbb{Z}$, the power properties still hold as long as $a \neq 0$. But when $x_{1}, x_{2} \in \mathbb{Q}$ or $x_{1}, x_{2} \in \mathbb{R}$, then we need to restrict the base to the domain $a>0$.

Explaining Power Properties: Parallels in K-12 Mathematics

Explaining power properties	Parallel in K-12
Power properties for positive integer exponents How: Counting positive integer number of real factors $x_{2}\{\begin{array}{l} \begin{array}{c} a \cdot a \cdots a \\ a \cdot a \cdots a \\ \vdots \\ \vdots \cdot a \cdots a \end{array} \end{array} \text { or } \quad \underbrace{x_{1}\left(\begin{array}{ccc} a & a & a \\ a & a & a \\ \vdots & \vdots & \cdots \\ a & a & a \end{array}\right.}_{x_{1}}$	Commutativity of addition and multiplication of positive integers How: Counting dots
Power properties for integer exponents How: Multiplying and dividing factors; pair up multiplicative inverses.	Commutativity of addition and multiplication of integers How: Location/movement on number line; pair up additive inverses
Power properties for rational non-integer exponents How: Compare powers; use definition of q-th root, which is based on definition of fraction	Arithmetic properties of division and fractions (e.g., $p \div q=\frac{1}{q} \cdot p$) How: Comparing lengths; use definition of division and definition of fraction $5 \div 3=5 \times \frac{1}{3}$
Power properties for real non-rational exponents How: Use sequences of rational powers; use meaning of convergent sequence for values and rates of change	Limits of sequences, in pre-calculus and calculus How: Meaning of convergence

