Math 3325 Dr. Duval

1. Prove by induction on n that

 $n! > 4n^2$

for all integers $n \geq 5$.

2. Let f_n denote the *n*th Fibonacci number ($f_0 = 0, f_1 = 1$, and $f_{n+2} = f_{n+1} + f_n$). Prove by induction on *n* that

$$\sum_{i=1}^{n} f_{2i} = f_{2n+1} - 1$$

for all positive integers n.