due Thursday, October 26

1. Prove by induction on n that

$$
n!>4 n^{2}
$$

for all integers $n \geq 5$.
2. Let f_{n} denote the nth Fibonacci number $\left(f_{0}=0, f_{1}=1\right.$, and $\left.f_{n+2}=f_{n+1}+f_{n}\right)$. Prove by induction on n that

$$
\sum_{i=1}^{n} f_{2 i}=f_{2 n+1}-1
$$

for all positive integers n.

