7.2 Cardinality

Definition: If A is a finite set, then its cardinality is $n(A) = \text{number of elements in } A$.

Union Rule of Counting: If A and B are finite sets, then $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

Definition: If S is a finite universal set and A is a subset of S, then $n(A') = n(S) - n(A)$ and $n(A) = n(S) - n(A')$.

Definition: If A_n and B are finite sets, then $n(A \times B) = n(A)n(B)$.

Examples: Let $A = \{\text{Dirk, Johan, Frans, Sarie}\}$, $B = \{\text{Frans, Sarie, Tina, Klaas, Henrika}\}$, and $C = \{\text{Hans, Frans}\}$. Find the numbers indicated.

1. $n(A) + n(B) = 4 + 5 = 9$
 - 4 elements in A
 - 5 elements in B

2. $n(A \cup B) = 7$
 - $A \cup B = \{\text{Dirk, Johan, Frans, Sarie, Tina, Klaas, Henrika}\}$

3. $n(A \cup (B \cap C)) = 4$
 - $B \cap C = \{\text{Frans}\}$
 - $A \cup (B \cap C) = \{\text{Dirk, Johan, Frans, Sarie}\}$
Example: Let \(C = \{ \text{Head, Tail} \} \), \(D = \{ 1, 2, 3, 4, 5, 6 \} \), and \(P = \{ \text{red, yellow, blue} \} \). Find the numbers indicated.

1. \(n(C \times C) = 2 \times 2 = 4 \)
2. \(n(D \times D) = 6 \times 6 = 36 \)
3. \(n(C \times P) = 2 \times 3 = 6 \)
4. \(n(C \times D \times P) = 2 \times 6 \times 3 = 36 \)