Professor of Mathematics
University
of Texas at El Paso
Department of
Mathematical Sciences
University of Texas at El Paso
500 W. University Ave.
El Paso, Texas 79968-0514
Office: Bell Hall 201
Phone: 915-747-6758
Fax: 915-747-6502
email: eschwab@utep.edu
EDUCATION:
Ph.D. in Mathematics, "Babes-Bolyai" University of Cluj-Napoca, Romania. Thesis Title: ”Contribution to the Study of Multiplicativity and Additivity in Incidence Algebras” (communicated on Sept. 13th, 1995).
Licentiate in Mathematics, West University of Timisoara, Romania. Thesis Title: ”Inverses in Special Categories” (June 1987).
ADMINISTRATIVE:
Associate Dean for Research, College of Science, UTEP (10/2014 – 08/2015)
Assistant Dean - Scientific Coordinator, College of Sciences, Univ. of Oradea, Romania (09/1996 – 08/1998)
TEACHING:
undergraduate courses:
Abstract Algebra, Linear Algebra, Elementary Number Theory, Geometry, Discrete
Mathematics.
graduate courses: Special Topics in Abstract Algebra, Combinatorics, Number Theory
GRANTS:
Cross Institutional Implementation of Supplemental Instruction- UTEP-EPCC Cooperative Project, U.S. Dept. of Education , P120A050046, (10/01/2008 – 09/30/2011)
Modular Development and Supplemental Instruction (SI) for the Calculus Course taken by all STEM Majors, U.S. Dept. of Education, P120A050046, (10/01/2005 – 09/30/2008)
RESEARCH:
Number Theory – Arithmetical Functions
Algebraic Structures – Inverse Semigroups and Division Categories
Algebraic Combinatorics –Möbius Function and Möbius Categories
Mathematics Education – Problems Solving and Heuristic Strategies
PUBLICATIONS:
BOOKS
Silberberg, G., Schwab, E. D., (2003). Problems in Finite Group Theory. (pp. 90 pgs). Tempe, Arizona
Schwab, E. D., Schwab, E. H., (1997). Algebraic Structures. Modules. Homological Methods. (pp. 201 pgs.). Crican, Romania
Schwab, E. D., (1994). Algebraic Structures. Rings. (pp. 103 pgs). Multiprint, Romania
JOURNAL ARTICLES
Schwab, E. D., (2016). A Half-Factorial Locally Right Garsaide Monoid and the Inverse Monoid of Cofinite Monotone Partial Bijections on N*. Semigroup Forum, Springer, 92(2), 393-413.
Bede, B., Rudas, I. J., Schwab, E. D., Schwab, G., (2015). Approximation Properties of Lukasiewicz Fuzzy Systems. IEEE (DOI: 10.1109/NAFIPS-WConSC.2015.7284 188).
Schwab, E. D., Schwab, G., (2015). A Möbius Arithmetic Incidence Function. Notes on Number Theory and Discrete Mathematics, 21(3), 27-34.
Schwab, E. D., (2015). Möbius monoids and their connection to inverse monoids. Semigroup Forum, Springer, 90(3), 694-720.
Schwab, E. D., Schwab, E., (2015). On Inverse Categories with Splitting Idempotents. Archivum Mathematicum, 51(1), 13-25.
Schwab, E. D., Bede, B. (2014). A Note on a Broken Dirichlet Convolution. Notes on Number Theory and Discrete Mathematics, 20(2), 65-73.
Schwab, E. D., (2013). Dirichlet Convolution, Bicyclic Semigroup and the Breaking Process. Int. Journal of Number Theory, 9(8), 1961-1972.
Schwab, E. D., (2013). Inverse Semigroups Generated by Group Congruences. The Möbius Function. Algebra and Discrete Mathematics, 16(1), 116-126.
Schwab, E. D., (2013). The Reduced Clifford Category of the Kachel Semigroup on n Letters. Journal of Algebra and its Applications, 12(1), 1250134 1-9.
Schwab, E. D., (2013). Lawvere intervals and the Möbius function of a Möbius category. Discrete Mathematics and Applications, 22 (2012)(5-6), 545-554.
Schwab, E. D., (2013). The Free Monogenic Inverse Semigroup and the Bicyclic Multplication. Annales des Sciences Mathematique du Quebec, 36 ( 2012)(1), 235 - 243.
Schwab, E., Schwab, E. D., (2012). Quantum Logic, Dagger Kernel Categories and Inverse Baer*-Categories. Order / Springer, 29(3), 405-417.
Schwab, E. D., (2011). Binary Matrices as Morphisms of a Triangular Category. Journal of Combinatorics and Number Theory., 3(2), 113–122.
Stoianov, G.*, Schwab, E. D., (2011). A Dirichlet Analogue of the Free Monogenic Inverse Semigroup via Mobius Inversion. Rocky Mountain Journal of Mathematics, 41(5), 1701 - 1710.
Macedo, A.*, Schwab, E. D., (2011). Maximal elements and their group-like set. Annals. Computer Science Series, Tibiscus University, 9(1), 107-114.
Schwab, E. D., (2010). On Fibonacci and Thue-Morse Words. Journal of Automata, Languages and Combinatorics, vol.15(no.3/4), 285-295.
Schwab, E. D., (2010). Generalized Arithmetical Functions of Three Variables. Int. Journal of Number Theory, vol.6(no.7), 1689-1699.
Schwab, E. D., (2010). On Incidence Algebras of Combinatorial Inverse Monoids. Communications in Algebra, vol.38(no.5), 1778-1789.
Schwab, E. D., (2010). The Möbius Category of a Combinatorial Inverse Monoid with Zero. Annales des Sciences Mathématiques du Québec, vol.33 (2009)(no.1), 93-113.
Schwab, E. D., (2009). A partial order on bipartite graphs with n vertices. Annals. Computer Science Series, Tibiscus, 7(1), 315-324.
Bede, B., Nobuhara, H., Rudas, I.J., Schwab, E. D., (2009). Approximation by Shepard type pseudo-linear operators and applications to Image Processing. Int. Journal of Approx. Reasoning, Elsevier, 50, 21-36.
Haukkanen, P., Schwab, E. D., (2008). A unique factorization in commutative Möbius monoids. Int. Journal of Number Theory, World Scientific, 4(4), 549-561.
Popescu, L., Schwab, E. D., Mendez, O., (2008). Inner Separation Structures for Topological Spaces. Balcan Journal of Geometry and its Appl, 13(2), 59-65.
Schwab, E. D., (2008). Strictly Increasing Sequences of Integers and the Möbius Inversion Formula. JP J. of Algebra, Number Th.& Appl., Pushpa Publishing House, 11(1), 59-65.
Schwab, E. D., (2008). The Möbius Category of a Semilattice of Groups. Italian Journal of Pure and Appl. Math, 24, 121-134.
Schwab, E. D., Romero E.*, (2006). On the Combinatorial Inverse Monoid IO3. Anale Univ. Tibiscus, vol.4 (no 1), 213-227.
Romero, E.*, Schwab, E. D., (2005). Abstract Möbius-Division Categories are Reduced Standard Division Categories of Combinatorial Inverse Monoids. Anale Univ. Tibiscus, vol.3(tome 1), 21-29.
Schwab, E. D., (2004). Characterizations of Lambek-Carlitz Type. Archivum Mathematicum, 40(3), 295-300.
Schwab, E. D., (2004). Möbius Categories as Reduced Standard Division Categories of Combinatorial Inverse Monoids. Semigroup Forum, Springer-Verlag, 69, 30-40.
Schwab, E. D., (2004). The Möbius Category of Some Combinatorial Inverse Semigroups. Semigroup Forum, Springer-Verlag, 69, 41-50.
Schwab, E. D., (2003). On Triangular Categories. Houston Journal of Mathematics, 29(1), 25-40.
Schwab, E. H., Schwab, E. D., (2002). The Inverse Baer-Category of a Chain, Radovi Matematicki, 11, 7-11.
Silberberg, G., Schwab, E. D., (2001). The Valuated Ring of the Arithmetical Functions as a Power Series Ring. Archivum Matematicum, vol.37(no.1), 77-80.
Silberberg, G., Schwab, E. D., (2000). A Note on Some Discrete Valuation Rings of Arithmetical Functions. Archivum Matematicum, vol.36(no.2), 103-109.
Schwab, E. D., Silberberg, G.,(1999). Bemerkungen mit bezug auf die Anzahl der zyklischen Untergruppen von gegebener Ordnung im Falle einer endlichen Gruppe. Bul. St.of Univ. “Politehnica” - Timisoara, 44 (58) (1), 1-6.
Schwab, E. D., (1999). Characterization of A-Multiplicative Functions via the Haukkanen's Functions,. Journal of Natural Sciences and Mathematics, vol. 39 (no.1), 1-5.
Schwab, E. D., (1998). Complete Multiplicativity and Complete Additivity in Möbius Categories. Italian Journal of Pure and Applied Math., 3, 37-48.
Schwab, E. D., Silberberg, G., (1998). Uber die Anzahl der zyklischen Untergruppen gegebener Ordnung im Falle einer endlichen Gruppe. Nieuw Archief voor Wiskunde, (IV), vol.16 (no.3), 143-151.
Schwab, E. D., Silberberg, G., (1997). Aplicatii ale teoriei numerelor in studiul grupurilor finite (Applications of Number Theory in the Study of Finite Groups). Seminar Arghiriade / Univ.of Timisoara, 28, 1-22.
Schwab, E. D., Schwab, E., (1996). Multiplicativite dans les Categories de Möbius. Bull. for Appl Math./Budapest, 147-164.
Schwab, E. D., (1996). Regular Convolutions and A-Additive Arithmetical Functions. Pure Math and Appl., vol.7 (no.1-2), 183-190.
Schwab, E. D., (1995). Dirichlet Product and Completely Additive Arithmetical Functions. Nieuw Archief voor Wiskunde, Vierde serie Deel/Amsterdam, vol.13 (no.2), 187-193.
Schwab, E. D., (1994). On a Completely Additive Incidence Functions. Pure Math. and Appl., vol.5 (no.2), 201-204.
Schwab, E. D., (1994). On Completely Multiplicative Incidence Functions in Triangular Categories, Analele Univ. Oradea, vol 4, 30-32.
Schwab, E. D., (1993). On Regular Convolutions, Analele Univ. Oradea.vol 3, 16-21.
Schwab, E. D., (1993). Multiplicative and Additive Elements in the Ring of Formal Power Series, Pure Math and Appl.,vol 4, (no.3), 339-346.
Schwab, E. D., (1992). Completely Additive Incidence Functions , Analele Univ. Oradea.vol 2, 124-127.
Schwab, E. D., (1991). Completely Additive and Discriminative Convolutions, Analele Univ. Oradea.vol 1, 143-148.
Schwab, E. D., Schwab, E., (1990). Total Additivity and Summation Function. Seminar Arghiriade/Univ. of Timisoara, 25, 1-7.
Schwab, E. D., Toth, L., (1990). On Some Elementary Number Theoretic Inequalities Involving the Dirichlet Convolution. Seminar Arghiriade/Univ. of Timisoara, 24, 1-5.
Schwab, E. D., (1989). Asupra functiei de sumare a unei functii aritmetice (On the Summation Function of an Arithmetic Function). G.M./Bucharest, 9, 321-325.
Schwab, E. D., Schwab, E.,(1989). Elements multiplicatifs d’une algebre incidente. Seminar Arghiriade / Univ.of Timisoara, 18, 1-27.
Schwab, E. D., Schwab, E., (1988). Arithmetic Convolution. Applications in Combinatorics. Seminar Arghiriade / Univ.of Timisoara, 17, 1-8.
Schwab, E. D., (1988). Egy szamelmeleti fuggveny osszegezo fuggvenyerol, (On the Summation Function of an Arithmetic Function). Matematikai Lapok 11-12, 426-429.
Schwab, E. D., Schwab, E.,(1988). Produsul Dirichlet al functiilor aritmetice (The Dirichlet Product of Arithmetic Functions). G.M. Metod/Bucharest, 3, 120-124.